
Lidar-Monocular Visual Odometry using Point and Line Features

Shi-Sheng Huang1, Ze-Yu Ma1, Tai-Jiang Mu1, Hongbo Fu2, and Shi-Min Hu1

Abstract— We introduce a novel lidar-monocular visual
odometry approach using point and line features. Compared to
previous point-only based lidar-visual odometry, our approach
leverages more environment structure information by intro-
ducing both point and line features into pose estimation. We
provide a robust method for point and line depth extraction,
and formulate the extracted depth as prior factors for point-line
bundle adjustment. This method greatly reduces the features’
3D ambiguity and thus improves the pose estimation accuracy.
Besides, we also provide a purely visual motion tracking method
and a novel scale correction scheme, leading to an efficient lidar-
monocular visual odometry system with high accuracy. The
evaluations on the public KITTI odometry benchmark show
that our technique achieves more accurate pose estimation than
the state-of-the-art approaches, and is sometimes even better
than those leveraging semantic information.

I. INTRODUCTION

Lidar-visual odometry has been an active research topic
due to its wide applications such as robotics, virtual reality,
and autonomous driving, etc. The combination of visual sen-
sors and lidar sensors as lidar-visual odometry achieves the
benefits of both types of sensors,and thus has been gaining
more and more research interests in the computer vision,
computer graphics, and robotics communities nowadays [1].

Recently, tightly coupled fusion algorithms like V-
LOAM [2] show impressive performance for visual-enhanced
lidar odometry. Those algorithms follow the odometry frame-
work without using SLAM techniques such as bundle ad-
justment and loop closure. The subsequent works such as
DEMO [3], LIMO [4] and DVL-SLAM [5], [6] utilize
bundle adjustment techniques to achieve much higher motion
estimation accuracy. Although the camera tracking front-end
may be different for these approaches (with DEMO [3] and
LIMO [4] following the feature-based visual SLAM like
ORB-SLAM2 [7], and DVL-SLAM [5] following the direct-
based visual SLAM (as like DSO [8]) for camera tracking),
all of them take sparse point based bundle adjustment as
back-end to correct camera tracking in an accurate way.
However, the accuracy of those point-only systems is still
not very satisfactory and some of them like LIMO [4]
require extra semantic information as input, which, however,
is computationally expensive to obtain.

The recent techniques for 3D reconstruction using struc-
ture from motion ([9], [10]) and accurate motion estimation
of visual SLAM systems ([11], [12]) show that utilizing
more structural information from real environments, such as

1Shi-Sheng Huang, Ze-Yu Ma, Tai-Jiang Mu, and Shi-Min Hu are with
the Department of Computer Science and Technology, Tsinghua University
and BNRist, China.

2Hongbo Fu is with the School of Creative Media, City University of
Hong Kong, China.

line features, leads to more accurate camera pose estimation.
Besides, line features have conditional benefits that they are
less sensitive with problems such as noise [13], wide range of
view angle [14], and motion blur [15], which are the main
drawbacks for the point-only systems such as LIMO [4].
This motivates us to combine point and line features together
for an accurate lidar-visual odometry system. However, there
is an open issue for line-based visual SLAM systems since
line-based 3D triangulation can be sensitive during camera
tracking [16], thus causing an unstable visual SLAM system
without satisfactory pose estimation accuracy. Although line
features might richly exist in various scene environments
(especially in urban environments), it is nontrivial to directly
adopt line features for the lidar-visual odometry.

In this paper, we provide a robust and efficient lidar-
monocular visual odometry method combining both point
and line features in a purely geometric way to extract
more structural information from scene environments than
point-only systems. More specifically, our system fuses the
point and line features as landmarks during camera tracking
and formulates the point-based and line-based landmarks’
reprojection errors as factors for bundle adjustment in the
back end. During sensor fusion, we provide a robust method
to extract the depth of the points and lines from the lidar data,
and use the depth prior to guide camera tracking. In this way,
we avoid the creation of 3D landmarks solely based on the
possibly ambiguous 3D triangulation, especially for the 3D
lines. The depth prior is also formulated as prior factors in
the point-line bundle adjustment to further improve the pose
estimation accuracy.

Besides, to overcome the scale drift in the frame-to-frame
odometry, we recover the scale in each keyframe using a
scale correction optimization before bundle adjustment. In
this way, we achieve an efficient but driftless lidar-visual
odometry system. Benefited from a rich set of structural 3D
landmarks, we achieve much higher pose estimation accuracy
compared with the other purely geometric approaches (such
as DEMO [3] and DVL-SLAM [5]) evaluated on the KITTI
odometry benchmark [17], and comparable accuracy with
LIMO [4] but without using any extra semantic information.
To the best of our knowledge, we give the first efficient
lidar-monocular odometry approach using the point and line
features together in a purely geometric way.

II. METHODOLOGY

Preprocessing. Given a monocular image sequence and
a lidar sequence, we assume that the intrinsic and extrinsic
parameters of the two sensors have been calibrated, and both
two sensor data have been temporally aligned. We set the



Fig. 1. The system framework of our approach. Given the input monocular image sequence and lidar sequence, we extract the point and line features for
each image, and track image frames using our frame-to-frame odometry with scale corrected by our scale correction optimization. For each keyframe, the
depth priors for point and line landmarks are extracted and fed to the point-line bundle adjustment. Loop closure with the point and line features is used
for further pose estimation correction. The graph structure for bundle adjustment is illustrated in the dashed box with different factors. The components
highlighted in green are our main contribution in this work.

camera’s local coordinate as the body coordinate, and the
world coordinate as the beginning of the body coordinate.

Overview. Fig. 1 shows the framework of our system,
which contains three running threads: a motion tracking
thread (front-end), a bundle adjustment thread (back-end),
and a loop closure thread. The front-end first extracts the
point and line features in every frame (Section II-A), then
estimates the feature’s depth prior in every keyframe (Section
II-B), and finally estimates the camera poses with a frame-to-
frame odometry (Section II-C). A scale correction optimiza-
tion (Section II-D) is performed to correct the scale drift after
the frame-to-frame odometry. The back-end performs point-
line bundle adjustment with point-line constraint factors
(Section II-E). A bag-of-words based loop closure [18] with
point and line features is also performed to further refine the
poses of keyframes (Section II-F).

A. Feature Extraction

Point Feature. Various point features (SIFT, SURF, ORB
etc) can be used to serve as tracking features. We adopt
the Oriented fast and Rotated BRIEF (ORB) feature as the
point feature for efficiency as done in ORB-SLAM2 [7].
During detection, the ORB features are required to be evenly
distributed in the image as much as possible.

Line Feature. For each image, we use the popular line
feature detector, Line Segment Detector (LSD) [19], to detect
line segments, for which the Line Band Descriptor (LBD)
[20] will be extracted.

The LSD algorithm often breaks a long line segment into
several short ones as shown in Fig. 2 (Left). Besides, some
detected line segments may be quite near, such as the border
edges of a thin area as shown in Fig. 2 (Right). The existence
of such detected line segments often makes the subsequent
line matching task complex, thus increasing the uncertainty

Fig. 2. We chain short line segments into a longer one (Left), or merge
near line segments into a new one (Right) to enhance the quality of lines
returned by LSD. The images come from KITTI dataset sequence 00.

of 3D line triangulation. To address these issues we propose
to improve the results of the LSD algorithm by merging such
“bad” line segments, as shown in Fig. 2. More specifically,
for a line segment pair (li, lj), if only one endpoint of li
is near to lj’s endpoint, we link li and lj to form a longer
line segment. If both endpoints of li are near to those of lj
and the distance between li and lj is under a given threshold
(10px in our implementation), we merge li and lj as a new
line segment. The LBD line descriptor is also updated for
the newly linked or merged line segment.

B. Point and Line Depth Extraction

In this section we describe a method to extract the point
and line depth from the lidar data. Here the depth for a 2D
point feature means the depth of its corresponding 3D point,
and for a 2D line feature means the depth of two endpoints’
corresponding 3D landmarks



Fig. 3. A simple illustration for point and line depth extraction. After the
sparse lidar data (grey points) is aligned to the image plane, the point depth
and line depth are extracted in the point neighbor patch and line neighbor
patch separately.

For each detected 2D point or line segment, its depth prior
is estimated using a neighbor patch separately as shown in
Fig. 3. More specifically, the lidar points belonging to a
point patch are first segmented into foreground points and
background points using the method introduced by Tateno et
al. [21]. Then a plane is fitted using the foreground points,
and the depth of the feature point is that of the intersection
point between the point ray and the plane. For the lidar
points P = {pi} belonging to a line patch of an image line
segment lj , we first estimate its corresponding 3D line L∗j
by minimizing the following energy

L∗j = arg min
Lj

∑
i

d(pi, Lj) + e(Lj , lj), (1)

where d(pi, Lj) is the Euclidean distance between lidar point
pi and Lj , and e(Lj , lj) is the line reprojection error as
described in Section II-E. Here for initialization, we fit the
lidar points belonging to the line patch with a 3D line L′j as
the initialization of Lj . After L∗j is estimated, the two end
points priors (as shown in Fig. 5(left)) can be obtained by
using endpoint trimming as described in [10], [11]. Besides,
for points and line segments locating beyond the view of
LiDAR data, we use the point triangulation and line trimming
for the depth prior estimation [10], [11].

We adopt the Plücker coordinates [9] to represent a 3D line
during the motion tracking, and the orthonormal representa-
tion [9] as the minimum parameters. The optimization can
be efficiently solved by Levenberg-Marquardt algorithm[22].

C. Frame-to-Frame Odometry

We use a pure visual Frame-to-Frame Odometry to es-
timate very frames’ camera pose, which is more efficient
than other ICP-based odometry like V-LOAM[2]. For a new
frame Fi, we estimate its camera pose Ti ∈ SE(3) using the
previous frame and 3D (point and line) landmarks optimized
by the bundle adjustment (Section II-E ). The detected 2D
point features (ORB) and line features (LBD) in Fi are
matched with the previous frame Fi−1’s tracking features
by performing 2D-2D point matching and line matching,
respectively. The estimated 3D point landmarks and 3D line
landmarks are extracted to estimate Fi’s camera pose by
solving a perspective-n-point/line problem [23].

Fig. 4. The graph structure for scale correction optimization.

Since the descriptor distance might not be so descriptive
for 2D-2D line matching, in practice we use several geomet-
ric criteria to filter out ’poor’ line matching pairs to improve
the matching accuracy. Specifically, a good candidate line
matching pair (li, lj) needs to satisfy : (1) the angular
difference is smaller than a given threshold; (2) the length
difference is also below a given threshold; (3) the distance
between the middle points of li and lj should be small
enough. After solving the perspective-n-point/line problem,
the current frame Fi’s camera pose Ti is updated. The 3D
point landmarks and line landmarks are re-projected to frame
Fi’s image plane to check whether the 3D-2D matching is
outlier or not. Outliers are removed once detected. As for
the details of line camera projection, endpoints trimming,
and line triangulation, please refer to [10], [11].

D. Scale Correction Optimization

Since the estimated scale might drift from its real physical
scale, we propose to correct the scale using a scale correction
optimization. Our key idea is to fuse the relative camera
poses computed from the ICP alignment step to adjust the
newly estimated keyframe’s camera pose and the related 3D
landmarks via a scale correction optimization.

This problem is formulated as a graph based optimization
as illustrated in Fig. 4. For a newly selected keyframe
with the estimated camera pose Ti ∈ SE(3), we build
its neighboring keyframe set Ti = {Ti, Ti−1, ..., Ti−n}, the
3D point landmarks set Pi, and 3D line landmark set Li

which are visible from the keyframe set Ti. Our goal is to
adjust the keyframe’s camera pose Ti, 3D point landmarks
Pi, and 3D line landmarks Li while keeping fixed for
other keyframes’ camera poses Ti\{Ti}. Specifically, this is
achieved by minimizing the following error function:

Ei = eposei,i−1 +
∑

Pj∈Pi

∑
Tk∈Ti

ePj,k +
∑

Lj∈Li

∑
Tk∈Ti

eLj,k, (2)

where epose, eP , and eL are the relative pose factor error,
point re-projection factor error, and line re-projection factor
error as described in Section II-E, respectively. This opti-
mization can be solved efficiently using the g2o library [24].

Using our scale correction, the scale drift can be re-
duced efficiently (as shown the evaluation in Section III).
For efficiency, the time-consuming ICP alignment is only
performed between keyframes. Note that the relative camera



Fig. 5. A 3D line landmark Li
w is re-projected onto the image plane

yielding a 2D line li matched with a line segments l′i(Left), with P ′ and
Q′ are the priors computed from the depth prior extracted in Section II-B.
The error between the re-projected line li and the matched line segment l′i
is defined by the distances from its two endpoints to the line li (Right).

pose computed by the frame-to-frame odometry can be used
as pose initialization to accelerate the ICP alignment.

E. Point-Line Bundle Adjustment

We form a point-line bundle adjustment in the back-end
between keyframes of a sliding neighbor window, similar to
ORB-SLAM2 [7]. Specifically, when a new keyframe arrives,
bundle adjustment is performed in its neighboring keyframe
set T , with 3D point landmark set P and 3D line landmark
L. As illustrated in Fig. 1, we formulate bundle adjustment as
a graph based optimization with the following three factors,
aiming at adjusting the keyframes’ camera poses T , 3D point
landmark position P , and 3D line landmark position L.

Relative Pose Factor. For a pair of adjacent keyframes
with the estimated camera poses {Ti, Tj} ⊂ T , and the
relative camera pose T icp

i,j computed from the point cloud
ICP alignment step, we formulate the difference vector ξi,j
between the relative camera pose T pose

i,j = Ti ∗ T−1j and

T icp
i,j as: ξi,j = Log(T pose

i,j ∗ T icp
i,j

−1
) ∈ R6, where Log(·)

is the logarithmic map of SE(3) [25]. The relative pose
error is computed as eposei,j = ξi,j

T Σpose
i,j ξi,j , where Σpose

i,j

is a 6 × 6 information matrix. ICP alignment would fail
under certain conditions leading to “bad” relative camera
poses. To penalize the “bad” ICP alignment, we compute the
information matrix adaptively according to the ICP alignment
quality. Letting êi,j be the ICP error for setting the relative
camera pose as T pose

i,j and ēi,j for T icp
i,j , we compute a scale

factor ζi,j = e
(−2.0∗(

ēi,j
êi,j

)
2
)

and set Σpose
i,j = ζi,jI6×6.

Point Re-projection Factor. Assume a 3D point landmark
Pi ∈ P in the world frame is matched to a 2D point feature
positioned pi in the keyframe Tj ∈ T . By re-projecting
Pi onto the keyframe’s image plane, we can obtain a re-
projected position for Pi as p′i = π(Pi, Tj ,K), where π(·)
is the projection function and K is the camera’s intrinsic
parameter matrix. We then compute the re-projection error
as ρi,j = (pi − p′i) ∈ R2. If there exists depth prior for
this point feature, we formulate ρi,j as stereo-reprojection
error as described in ORB-SLAM2 [7] by including the
depth prior. Finally, the point re-projection error is defined

as ePi,j = ρi,j
T ΣP

i,jρi,j , where ΣP is the covariance matrix.
Line Re-projection Factor. A 3D line landmark Li ∈ L

in the world frame can also be re-projected to a keyframe
Tj ∈ T , yielding a line segment li = [li1 l

i
2 l

i
3]

T ∈ R3 in the
2D image plane as described in Section II-A. Suppose a line
segment l′i with two endpoints p′i and q′i is matched to Li, as
illustrated in Fig. 5. We can formulate the line re-projection
error vector as: γi,j = [

li
T p′

i√
li1

2+li2
2

li
T q′i√

li1
2+li2

2
]T ∈ R2. If

there exists depth prior for this line feature, we compute
the distance between end points priors P ′, Q′ to the 3D line
landmark as d(P ′),d(Q′) separately as shown in Fig. 5(left).
Then the line re-projection error vector is computed as:
γi,j = [

li
T p′

i√
li1

2+li2
2

li
T q′i√

li1
2+li2

2

d(P ′)+d(Q′)
2 ]T ∈ R3. Finally,

the line re-projection error can be computed as eLi,j =
γi,j

T ΣL
i,jγi,j , where ΣL is the covariance matrix.

In summary, our keyframe based bundle adjustment op-
timization seeks the minimization of the following cost
function,

E =
∑

{Ti,Tj}⊂T

eposei,j +
∑
Pi∈P

∑
Tj∈T

ePi,j +
∑
Li∈L

∑
Tj∈T

eLi,j (3)

In solving the non-linear optimization, we adopt a 6D
vector ξ ∈ R6 as the minimum parameters for a camera
pose T (ξ) ∈ T , a 3D vector θ ∈ R3 for a point landmark
P (θ) ∈ P , and a 4D vector φ ∈ R4 for a line landmark
L(φ) ∈ L [10], to make the system computationally
efficient and numerically stable. We solve this point-line
bundle adjustment efficiently using the g2o library [24].

F. Loop Closure

Loop closure involves loop detection and loop correction
based on the keyframes during motion estimation. For loop
detection, we first use the DBoW [18] algorithm to train the
vocabulary for the point feature (ORB descriptor) and line
feature (LBD descriptor) respectively. Then every keyframe
Ki is converted to a point BoW vector vPi and line BoW
vector vLi . When evaluating the similarity between keyframes
Ki and Kj , we define the similarity score as: s(i, j) =

e(1−sp(v
P
i ,vP

j ))2e(1−sl(v
L
i ,vL

j ))2 , with sp(vPi , v
P
j ) is the sim-

ilarity score of the point BoW vector and sl(vLi , v
L
j ) for the

line BoW vector. Once the similar keyframe candidates for
a newly selected keyframe Ki are found, the loop correction
is performed using a global bundle adjustment algorithm [7].

III. EXPERIMENTS

Our system is implemented based on ORB-SLAM2 [7]
with three threads, namely frame-to-frame odometry,
keyframe based bundle adjustment, and loop closure. When
performing ICP alignment, we use the Normal Distributions
Transform (NDT) [26] implemented in the PCL library [27]
to compute the relative camera pose between two adjacent
point clouds. We test our approach on the training dataset of
the public KITTI benchmark, which contains sequences 00-
10 with ground truth trajectories, and analyze the accuracy
and time efficiency of our approach on a computer with Intel



Fig. 6. The motion tracking accuracy comparison between the point-only
system (Left) and our system (Right), at the glance of frame 1380 of KITTI
dataset sequence 00. The results by the point-only system have obvious
drifts, while our results have drift free motion tracking.

Fig. 7. Our motion tracking trajectories on KITTI training dataset
sequences 00 (Left) and 05 (Right), with results by our full system (Ours(*)),
the system without depth prior module (Ours(-)) and system without
scale correction module (Ours(#)) comparing with the ground truth (GT)
trajectory separately.

Core i7-2600 @ 2.6GHz and 8G memory in a 64-bit Linux
operation system.

Parameters. For each image, we extract 1000 ORB
features. Line segments with length below 50 pixels are
discarded. When performing line matching in Section II-
C, we set the angle threshold as 2◦, length difference ratio
as 0.1, and distance threshold as 5 pixels. In the bundle
adjustment step, the covariance matrix is set ΣP = 0.1 ∗ I
for the point re-projection factor and ΣL = 0.2 ∗ I for the
line re-projection factor.

Point-only versus Point-line. We first evaluate our ap-
proach on the performance of tracking features. We imple-
mented a baseline version of our approach using point-only
feature, and compared it with our full system. As shown
in Fig. 6, our system achieves less drift motion tracking
with higher accuracy while the point-only approach has
obvious drifts. We conduct a quantitative evaluation on the
whole training dataset and summarize the average rotation
and translation errors obtained by dividing the segment of
each trajectory by 100m, 200m, ..., 800m as done by DVL-
SLAM [5], [6]. As shown in Table I, using both the point
and line features achieves significantly lower translation error
(0.94%) than the point-only baseline ( 2.16%).

Evaluation on Depth Priors and Scale Correction.
We also perform evaluation on the depth priors module
(Section II-B) and scale correction module (Section II-D)
by comparing the accuracy with our full system. As shown
in Table I, we build systems without depth priors module
(Ours(-)) or scale correction module (Ours(#)) separately, and
compare with our full system (Ours(*)) by the translation

error on the whole KITTI training dataset. The compari-
son results show that the depth priors module reduces the
translation error to a great extent (from 3.64% down to
0.94%). The scale correction module also plays an important
role to largely reduce the translation error, with about 50%
translation error reduced (from 1.95% down to 0.94%).
We can conclude that the depth prior module and scale
correction module (especially the depth prior module) can
largely reduce the pose estimation error in our system. There
are several representative motion tracking trajectories by
our system with different modules on some KITTI training
dataset sequences shown in Fig. 7. Please see more details
result in our video attachment.

Comparison with Existing Methods. We compare
our approach with DEMO [3], DVL-SLAM [5], [6] and
LIMO [4], all of which also have an optimization back-end
like ours. Other approaches such as V-LOAM [2] are only
visual odometry systems without optimization back-end , and
are thus not chosen for comparison. Note that LIMO [4]
needs extra semantic label information to identify moving
objects such as cars and people. To obtain such semantic la-
bel information, it often needs huge computational resources
such as Nvidia TitanX Pascal. In contrast, our approach,
DEMO and DVL-SLAM do not require such semantic label
information and can efficiently run in a CPU-only platform.
Our evaluation thus focuses on the comparison between our
method, DEMO, and DVL-SLAM. The average translation
errors by the compared methods are shown in Table I. Since
the semantic label data required by LIMO is available for
sequences 00,01,04, we show the results by LIMO for these
sequences only.

TABLE I
TRANSLATION ERROR [%] ON THE WHOLE KITTI TRAINING DATASET

Seq. DEMO DVL-
SLAM

Ours
(*)

Ours
(-)

Ours
(#)

Point-
Only

LIMO

0 1.05 0.93 0.99 3.23 4.14 2.81 1.12
1 1.87 1.47 1.87 9.40 5.03 3.21 0.91
2 0.93 1.11 1.38 4.96 3.81 2.10 -
3 0.99 0.92 0.65 1.06 0.67 1.67 -
4 1.23 0.67 0.42 0.89 0.66 1.78 0.53
5 1.04 0.82 0.72 2.94 0.88 1.52 -
6 0.96 0.92 0.61 3.28 0.85 1.30 -
7 1.16 1.26 0.56 3.53 0.74 2.07 -
8 1.24 1.32 1.27 3.71 1.83 3.61 -
9 1.17 0.66 1.06 4.41 1.82 1.73 -
10 1.14 0.70 0.83 2.63 0.99 1.92 -
avg 1.16 0.98 0.94 3.64 1.95 2.16 0.93

In the whole KITTI training dataset, we achieve the
average translation error 0.94% and rotation error 0.0036deg

m ,
which are lower than DEMO (translation error 1.14%,
rotation error 0.0049deg

m in the paper) and DVL-SLAM
(translation error 0.98%, rotation error is about 0.0040deg

m
in the paper). According to the original LIMO paper [4],
their reported average translation error is 0.93% and rotation
error is 0.0026deg

m . Though our translation error is slightly
higher than LIMO’s, we achieve lower translation error in
sequences 00 and 04 as shown in Table I. It shows that



Fig. 8. The error analysis performed on the KITTI training dataset between
DEMO, DVL-SLAM, LIMO and Ours. Note that LIMO only provided error
curves according to vehicle speed (Right), so we only collect DEMO, DVL-
SLAM and Ours error curves in the path length analysis (Left).

our approach as a purely geometric approach can achieve
comparable (and sometimes even better) accuracy to LIMO,
which requires extra semantic label information.

We perform error analysis according to the path length and
vehicle speed as did in DVL-SLAM, and the comparison
curves between DEMO, DVL-SLAM, LIMO and ours are
shown in Fig. 8. When the vehicle speed is faster, our
system leads to the lower accuracy. This explains why our
method performs relatively worse on sequence 01, which is
a very challenging case with very fast vehicle speed. Please
see more detail results of our method on the whole KITTI
training dataset in the video attachment.

Evaluation on NuScenes dataset. We evaluate our ap-
proach on the NuScenes dataset [28], which is a public large-
scale dataset of urban enviroment with plenty of structural
line features. To evaluate the accuracy of our lidar-visual
odometry without the effect of loop closure, we use the
NuScenes Part I subset dataset with 80 test scenes, each of
which only has one way trajectory without any loop pathes.
Since the trajectory path of every test scenes is not too long
(< 200m), we compute the average rotation and translation
errors by dividing the trajectory into segments like DVL-
SLAM but using 5m, 10m, 50m, 100m, 150m, 200m segment
length. In summary, our average translation error is 2.4% and
rotation error is 0.0007deg

m . In Fig. 9, we show the point-
line feature detection intermediate results (left) and point
cloud reconstruction results using the estimated camera poses
(right) of two example test scenes of NuScenes Part I dataset.

Time and Complexity. The feature extraction costs about
80ms, and the scale correction optimization takes about
30ms. The most time consuming part lies in the ICP align-
ment step, which costs about 300ms each time. Since the ICP
alignment is only performed between keyframes, and one
keyframe is selected every 3-4 frames, in average our system
achieves about 5Hz processing rate in CPU-only platform,
the same as LIMO which is achieved with the essential GPU
platform.

Discussion and Limitation. In this paper, we don’t claim
the point-line loop closure as our main contribution, since

Fig. 9. The test results of scene0007(top row) and scene0024(bottom row)
in NuScenes Part I dataset using our full system, including the point-line
detection results (left) and final point cloud reconstruction results using the
estimated camera poses (right).

this BoW based loop closure technique is ordinarily used in
systems like DEMO, DVL-SLAM and LIMO. The vehicle
odometry sensor data could also be fused into our system
by formulating the relative pose measured from the vehicle
odometry as factors in the point-line bundle adjustment,
leading to a more accurate LiDAR-Visual-Odometry system.
However, we only forcus on fusing more structural prior
information into the LiDAR-Visual SLAM solution and leave
it for the future work. Besides, our system didn’t consider
the factors raised by errors from the calibration parameters
and approximative synchronization of the LiDAR-Camera
sensors yet, which is also an interesting problem for a
robust LiDAR-Camera SLAM system valuable for a future
exploration. One of the drawbacks of our approach lies in
the tracking robustness. When the camera moves in large
rotations or in fast speed, our tracking system might get
failed, leading to less accurate motion estimation. Another
drawback of our approach lies in the moving objects, which
is beyond the power of purely geometric methods like ours.
In the future we would like to incorporate semantic informa-
tion for a more accurate lidar-visual odometry approach.

IV. CONCLUSION

In this paper we presented an accurate and efficient lidar-
monocular visual odometry approach using both the point
and line features. By leveraging more structural information,
we show that our approach is more accurate than the state-of-
the-art purely geometric techniques, and achieve comparable
accuracy with systems using extra semantic information such
as LIMO. We hope that our work could inspire follow-up
works to explore other types of structural prior information,
such as plane prior, parallel, orthogonal or co-plane rules,
for a more accurate LiDAR-Camera sensor fusion system.

V. ACKNOWLEDGEMENT

Thanks for the anonymous reviewers’ detail comments on
this paper. This work was supported by the Natural Sci-
ence Foundation of China (Grant No.: 61521002, 61863031,
61902210) and the China Postdoctoral Science Foundation
(Grant No.: 2019M660646).



REFERENCES

[1] S. Yang, B. Li, M. Liu, Y.-K. Lai, L. Kobbelt, and S.-M. Hu,
“Heterofusion: Dense scene reconstruction integrating multi-sensors,”
IEEE Trans. Vis. Comput. Graph.(TVCG), 2020 to appear.

[2] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: low-drift,
robust, and fast,” in IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 2174–2181.

[3] J. Zhang, M. Kaess, and S. Singh, “A real-time method for depth
enhanced visual odometry,” Auton. Robots, vol. 41, no. 1, pp. 31–43,
2017.

[4] J. Gräter, A. Wilczynski, and M. Lauer, “LIMO: lidar-monocular visual
odometry,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 7872–7879.

[5] Y.-S. Shin, Y. S. Park, and A. Kim, “Dvl-slam: sparse depth enhanced
direct visual-lidar slam,” Autonomous Robots, 2019.

[6] Y. Shin, Y. S. Park, and A. Kim, “Direct visual SLAM using sparse
depth for camera-lidar system,” in 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), 2018, pp. 1–8.

[7] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo, and RGB-D cameras,” IEEE Trans.
Robotics (TRO), vol. 33, no. 5, pp. 1255–1262, 2017.

[8] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
Trans. Pattern Anal. Mach. Intell. (PAMI), vol. 40, no. 3, pp. 611–625,
2018.

[9] A. Bartoli and P. F. Sturm, “The 3d line motion matrix and alignment
of line reconstructions,” International Journal of Computer Vision
(IJCV), vol. 57, no. 3, pp. 159–178, 2004.

[10] A. Bartoli and P. Sturm, “Structure-from-motion using lines: Repre-
sentation, triangulation, and bundle adjustment,” Computer Vision and
Image Understanding (CVIU), vol. 100, no. 3, pp. 416–441, 2005.

[11] G. Zhang, J. H. Lee, J. Lim, and I. H. Suh, “Building a 3-d line-based
map using stereo SLAM,” IEEE Trans. Robotics (TRO), vol. 31, no. 6,
pp. 1364–1377, 2015.

[12] X. Zuo, X. Xie, Y. Liu, and G. Huang, “Robust visual SLAM with
point and line features,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 1775–1782.

[13] P. Smith, I. D. Reid, and A. J. Davison, “Real-time monocular SLAM
with straight lines,” in Proceedings of the British Machine Vision
Conference 2006 (BMVC), 2006, pp. 17–26.

[14] A. P. Gee and W. W. Mayol-Cuevas, “Real-time model-based SLAM
using line segments,” in Advances in Visual Computing, Second
International Symposium, 2006, pp. 354–363.

[15] G. Klein and D. W. Murray, “Improving the agility of keyframe-based
SLAM,” in ECCV, 2008, pp. 802–815.

[16] Y. Zhao and P. A. Vela, “Good line cutting: Towards accurate pose
tracking of line-assisted VO/VSLAM,” in ECCV, 2018, pp. 527–543.

[17] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[18] D. Gálvez-López and J. D. Tardós, “Bags of binary words for fast
place recognition in image sequences,” IEEE Transactions on Robotics
(TRO), vol. 28, no. 5, pp. 1188–1197, October 2012.

[19] R. G. von Gioi, J. Jakubowicz, J. Morel, and G. Randall, “LSD: A
fast line segment detector with a false detection control,” IEEE Trans.
Pattern Anal. Mach. Intell. (PAMI), vol. 32, no. 4, pp. 722–732, 2010.

[20] L. Zhang and R. Koch, “An efficient and robust line segment matching
approach based on LBD descriptor and pairwise geometric consis-
tency,” J. Visual Communication and Image Representation, vol. 24,
no. 7, pp. 794–805, 2013.

[21] K. Tateno, F. Tombari, and N. Navab, “Real-time and scalable incre-
mental segmentation on dense SLAM,” in 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2015,
pp. 4465–4472.

[22] W. M. Häußler, “A local convergence analysis for the gauss-newton
and levenberg-morrison-marquardt algorithms,” Computing, vol. 31,
no. 3, pp. 231–244, 1983.

[23] A. Vakhitov, J. Funke, and F. Moreno-Noguer, “Accurate and linear
time pose estimation from points and lines,” in ECCV, 2016, pp. 583–
599.

[24] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o: A general framework for graph optimization,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2011, pp.
3607–3613.

[25] H. Strasdat, “Local accuracy and global consistency for efficient
SLAM,” Ph.D. dissertation, Imperial College London, UK, 2012.

[26] P. Biber and W. Straßer, “The normal distributions transform: a new
approach to laser scan matching,” in 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2003, pp. 2743–
2748.

[27] P. org., “Pcl library,” http://pointclouds.org/.
[28] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-

ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027,
2019.


