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A B S T R A C T

3D surface offsetting is a fundamental geometric operation in CAD/CAE/CAM. In this
paper, we propose a super-linear convergent algorithm to generate a well-triangulated
and feature-aligned offset surface based on particle system. The key idea is to distribute
a set of moveable sites as uniformly as possible while keeping these sites at a specified
distance away from the base surface throughout the optimization process. In order to
make the final triangulation align with geometric feature lines, we use the moveable
sites to predict the potential feature regions, which in turn guide the distribution of
moveable sites. Our algorithm supports multiple kinds of input surfaces, e.g., triangle
meshes, implicit functions, parametric surfaces and even point clouds. Compared with
existing algorithms on surface offsetting, our algorithm has significant advantages in
terms of meshing quality, computational performance, topological correctness and fea-
ture alignment.

c© 2017 Elsevier B. V. All rights reserved.

1. Introduction1

An offset surface (Maekawa, 1999), also called a parallel sur-2

face, consists of all the points that are at a constant distance3

d to an input surface. The computation of surface offsets is4

a common and fundamental operation in various applications5

in CAD/CAE/CAM (Kim et al., 2004; Pham, 1992; Kim and6

Yang, 2005), e.g., hollowed or shelled solid model generation7

for rapid prototyping.8

There is a large body of literature on computing offset sur-9

faces. Existing methods can be roughly divided into three cat-10

egories depending on the specific representation form of the11

input surface. For parametric curves or surfaces, a common-12

ly used approach (Farouki, 1985, 1986; Martin and Stephen-13

son, 1990) is to generate parametric offsets first, followed14

by carefully handling tangent discontinuities, cusps and self-15

∗Corresponding author.
e-mail: chenshuangmin@nbu.edu.cn (Shuangmin Chen)

intersections. When the input is a polygonal surface or implicit 16

surface (Maekawa, 1999; Pavi and Kobbelt, 2008; Chen and 17

Wang, 2011), one has to build a volumetric scalar field with a 18

dense resolution and then extract the iso-surface at the specified 19

distance. However, such an approach has at least two disadvan- 20

tages including (1) it requires a huge time/space cost since the 21

total number of voxels is O(1/ε3), where ε is the accuracy tol- 22

erance, and (2) the final offset surface does not have a desirable 23

triangulation quality. Finally, it seems that offset surfaces can 24

be obtained by a series of mesh boolean operations (Zhou et al., 25

2016) across a sufficiently large number of spheres centered at 26

the base surface, but experimental results show that it cannot 27

work well in practice due to the fact that the meshing quality 28

gets worse and worse after many boolean operations. This mo- 29

tivates us to develop an easy-to-use tool for generating a well- 30

triangulated and feature-aligned offset for an input surface that 31

can be a polygonal surface, a parametric surface, an implicit 32

surface, or even a point cloud. 33

In this paper, we propose a super-linear convergent algorithm 34
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(a) Input (b) Offset surface

Fig. 1. Our algorithm is able to produce a feature-aligned and high-quality
offset surface (b) for the input surface (a); See the close-up views.

to generate polygonal offsets. The key idea is to distribute a set1

of moveable sites as uniformly as possible while keeping these2

sites at a specified distance from the original surface throughout3

the optimization process. Because of the uniform distribution of4

these sites, an additional quick step of simply connecting sites5

is sufficient for producing the final triangle mesh. An example6

is shown in Figure 1.7

Our main contributions are at least threefold:8

1. Taking the uniformity of sites as the objective function9

whereas the specified distance to the base surface as the10

hard constraint, we formulate the offsetting problem us-11

ing particle system, which can be efficiently solved due to12

the closed-form formula of the gradients of the objective13

function.14

2. Throughout the optimization process, we use the moveable15

sites to predict the potential feature regions of the final off-16

set surface, which is in turn enforced on the objective func-17

tion to guide the distribution of the moveable sites, leading18

to a feature-aligned triangulation.19

3. The algorithm framework is powerful and supports var-20

ious kinds of input surfaces, including polygonal sur-21

faces, parametric surfaces, implicit surfaces and even point22

clouds.23

2. Related Work24

At least three kinds of works are related to the theme of this25

paper, including surface offsetting, particle system, and remesh-26

ing.27

Surface Offsetting. Existing offset algorithms assume that the28

input surface has a specific representation form. When the in-29

put surface has a parametric form, it is quite often to represent30

the offset surface as a parametric form as well. Existing al-31

gorithms of this kind focus on seeking a polynomial/rational32

alternative to approximate the exact parametric form, and han-33

dling tangent discontinuities, cusps and self intersections. For34

example, Filip et al. (Filip et al., 1986) developed a theorem on35

approximation accuracy using the bounds of second derivatives 36

of the original curves and surfaces. Piegl and Tiller (Piegl and 37

Tiller, 1999) proposed to approximate the offset surface with 38

the fewest number of control points. Kumar et al. (Kumar et al., 39

2002) developed a set of trimming techniques to handle invalid 40

local intersections. The above-mentioned methods, whose in- 41

put and output are both in parametric form, are different from 42

the goal in this paper, i.e., generating a high-quality polygonal 43

offset surface. 44

When the input is a polygonal or implicit surface, one can 45

build a volumetric scalar field to encode signed distances to 46

the base surface and then extract the offset surface based on 47

the marching cube technique (Liu and Wang, 2011; Pavi and 48

Kobbelt, 2008; Varadhan and Manocha, 2004). However, the 49

resolution of voxelization is hard to set. Coarse voxelization 50

may lead to a topologically incorrect reconstructed offset sur- 51

face but an over-dense voxelization requires a huge time/space 52

cost. What’s important is that it cannot produce a high-quality 53

triangle mesh to represent the offset surface. 54

Theoretically speaking, mesh boolean operations (Zhou 55

et al., 2016) seem to be able to compute the offsets individually 56

for each face, edge, and vertex and then return the union of the 57

basic offset elements as the final offset surface. However, exper- 58

imental results show that mesh boolean operations cannot work 59

well in practice. First, these basic offset elements highly over- 60

lap, causing a notorious difficulty in unionizing a large number 61

of such objects. Second, performing mesh boolean operations 62

across a large number of objects is inefficient and cannot guar- 63

antee a desirable meshing quality. Similarly, point based recon- 64

struction algorithms (Chen and Wang, 2011; Lien, 2008), based 65

on point shifting and filtering operations, cannot guarantee the 66

meshing quality either.

Fig. 2. For 200 input sites (a), CVT requires about 0.45 seconds and 91
iterations to get the distribution in (b), while the particle system requires
only 0.01 seconds and 48 iterations to achieve (c). Note that the distribution
in (c) is sufficient for the triangulation purpose in practice.

67

Particle System v.s. CVT. There are many application occa- 68

sions where we need to distribute a set of sites as uniformly 69

as possible. Both centroidal Voronoi tessellations (CVT) (Du 70

et al., 1999; Okabe et al., 2009) and particle systems (Turk, 71

1992; Witkin and Heckbert, 1994; Meyer et al., 2007; Bronson 72

et al., 2012) can serve for this purpose. Du and Wang (Du and 73

Wang, 2003) introduced the Lloyd method to compute CVT and 74

apply it into optimal tetrahedral mesh generation, while Liu et 75

al. (Liu et al., 2009) proposed a quasi-Newton method to com- 76

pute CVT and demonstrated the extraordinary ability in surface 77

remeshing. Particle system, by contrast, has a sound basis in 78
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physics and can serve for the same purpose by minimizing the1

global inter-particle forces to make the particles (sites, or ver-2

tices) keep the optimal balanced state, leading to a collection3

of uniformly distributed particles. Generally speaking, particle4

system is able to generate a desirable site distribution with less5

computational cost (Zhong et al., 2014) in contrast to CVT. As6

Figure 2 shows, particle system runs about many times faster7

than CVT in producing a uniform distribution of almost the8

same quality. Therefore, in this paper, we adopt particle sys-9

tem to iteratively optimize the distribution of sites (serving as10

vertices of the final offset surface).11

Remeshing. A wide range of applications require meshes with12

high-quality triangulation to facilitate numerical computation,13

and thus remeshing is an important research topic in computer14

graphics. Roughly speaking, there are three kinds of remeshing15

depending on various purposes. The first kind targets at uniform16

triangulation, which seeks for an as-uniform-as-possible vertex17

distribution (Liu et al., 2009). The second kind of remeshing18

algorithms aims at isotropic or anisotropic triangulation assum-19

ing that the base surface is equipped with a density function or20

an anisotropic metric to encode the underlying distance. For21

example, Chen et al. (Chen et al., 2012) developed an isotrop-22

ic remeshing method based on constrained centroidal Delaunay23

mesh(CCDM), while Zhong et al. (Zhong et al., 2013) intro-24

duced a particle-based approach for anisotropic surface mesh-25

ing. The third kind is to align triangulation with geometric26

features. For example, Lai et al. (Lai et al., 2010) presented27

an algorithm which turns an unstructured triangle mesh into a28

quad dominant mesh with mesh edges well aligned to the prin-29

cipal directions of the underlying surface.30

3. Problem Formulation31

3.1. Conventional formulation32

Suppose that the input surface is closed and orientable, and
has a parametric form S = S (u, v), (u, v) ∈ Ω ⊂ R2, for this
moment. Let n(u, v) be the unit normal vector at each point
(x(u, v), y(u, v), z(u, v)) ∈ S . Then the offset surface can be rep-
resented by

Od(u, v) = {(x(u, v), y(u, v), z(u, v)) + d · n(u, v)

| (u, v) ∈ Ω ⊂ R2}.
(1)

It offsets the original surface outward if d > 0 and inward oth-33

erwise. However, such a formulation has at least two disad-34

vantages. First, there may be redundant parts and an additional35

trimming operation is required. To our knowledge, the trim-36

ming operation is tedious and highly non-trivial. Second, it on-37

ly supports a parametric surface as the input. Therefore, a better38

formulation of this problem is badly needed.39

3.2. Particle system based formulation40

Suppose that there is a collection of moveable sites X =41

{xi}
N
i=1 to serve as the vertices of the final polygonal offset sur-42

face. On the one hand, we hope that X = {xi}
N
i=1 is as uniform43

as possible. This can be achieved by minimizing the following 44

energy function: 45

E(X) =

n∑
i

n∑
j

e−
‖xi−x j‖

2

4σ2 , (2)

where σ, called the kernel width, is used to adjust the influence
region for each site. On the other hand, we have to set a hard
constraint that each xi must be lying on the offset surface, i.e.,

‖xi − xS
i ‖ = d, i = 1, 2, · · · ,N, (3)

where xS
i is the projection (or closest point) of xi onto the prim- 46

itive surface S and it can be determined depending on specific 47

situations. 48

Parametric surface. When the input surface has a parametric
form, xS

i can be found by solving an optimization problem, i.e.,
seeking for a pair of parameters (u∗, v∗) such that the squared
distance

‖xi − S (u∗, v∗)‖2 = (xi − S (u∗, v∗))T(xi − S (u∗, v∗)) (4)

is minimized. 49

Implicit surface. When the input surface is an implicit surface
F(x) = 0, xS

i can be found by considering the following con-
strained optimization problem

Minimize ‖x∗ − xi‖
2 = (x∗ − xi)T (x∗ − xi)
subject to F(x∗) = 0.

(5)

In implementation, we compute xS
i by an iterative scheme. Let

x(0)
i := xi. Then x( j+1)

i is updated from x( j)
i by repeatedly updat-

ing x(i) according to

F(x( j)
i ) +

∂F
∂x
|x=x( j)

i
·(x( j+1)

i − x( j)
i ) = 0

and x( j+1)
i − x( j)

i is parallel to ∂F
∂x |x=x( j)

i
. The iterative algorithm 50

terminates until ‖x( j+1)
i − x( j)

i ‖ < ε. 51

Polygonal mesh. When the input is a polygonal mesh, the n- 52

earest point xS
i can be quickly found by bounding box tree 53

techniques, e.g., directly calling the proximity query package 54

(PQP) (Larsen et al., 1999). 55

56

Point clouds. Based on the Moving Least Square (MLS) tech- 57

nique (Lim et al., 2007), we can define a point-set surface ap- 58

proximated locally for a certain neighborhood by a polynomial, 59

and then project the test point xi near the point set onto this 60

surface, obtaining the projection point xS
i . 61

3.3. Feature Alignment 62

Feature alignment is to require edges follow feature lines, 63

which is very helpful to many computer graphics occasions es- 64

pecially mesh quadrangulation. Generally speaking, the quality 65

of feature alignment depends on the accuracy of feature detec- 66

tion (Hildebrandt et al., 2005; Weinkauf and Günther, 2009), 67
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(a) (b) (c) (d)

Fig. 3. In order to compute the offset surface of (a), we predict the feature regions (b) of the potential offset surface using the moveable sites. The feature
regions are able to trap the nearby sites into feature lines and finally lead to a feature-aligned triangulation (c), which is significantly different from the
uniform triangulation (d).

which is also a difficult problem. For example, Kalogerakis et1

al. (Kalogerakis et al., 2007) proposed robust estimation of s-2

moothed curvature directions that encode feature lines.3

In this paper, we predict the feature regions of the potential
offset surface using the moveable sites and further use the fea-
ture regions to guide the moves of the sites. We measure to what
degree the site xi is on feature line using the following formula:

τxi =

∫
x∈Ω(xi)

‖nx − n‖2dx∫
Ω(xi)

dx
, (6)

where nx is the normal vector at the point x in xi’s neighbor-
hood Ω(xi), while n is the average normal vector of Ω(xi). In the
discrete setting, τxi can be also written in the following form:

τxi =

∑
x j∈Ω(xi) ‖nx j − n‖2

K
, (7)

where K is the number of moveable sites in xi’s neighborhood
Ω(xi). Intuitively, τxi represents the disorder of the normal vec-
tors around xi. It is able to well capture the feature regions
of the potential offset surface (see Figure 3(b)), in spite of the
dynamic sites, throughout the optimization process. Then we
enforce {τxi } on the particle system as follows.

E(X) =

n∑
i

n∑
j

e−(τ−τxi−τx j )
‖xi−x j‖

2

4σ2 , (8)

where τ is set to 1.3 in our experiments. Compared to the uni-4

form triangulation in Figure 3(d) that is computed from Eq. (2),5

we find that Eq. (8) is able to trap the nearby sites into fea-6

ture lines, leading to a feature aligned triangulation shown in7

Figure 3(c). Note that our technique to achieve feature align-8

ment (Chen et al., 2012; Fuhrmann et al., 2010) is quite differ-9

ent from existing approaches on this side that usually require a10

feature-line detection step.11

4. Super-linear Convergent Algorithm 12

In this section, we summarize the particle-based method and 13

detail the components of the algorithm including the computa- 14

tion of the objective function and the algorithmic pseudo-code. 15

4.1. Objective function 16

The objective function is shown in Eq. (8), which is indepen-
dent of the specific representation form of the input surface and
has infinite-order smoothness. In order to achieve a better con-
vergence rate, we use the L-BFGS solver to optimize the sites
X. The gradients of the objective function ∂E

∂xi
are:

∑
j,i

−
(τ − τxi − τx j )(xi − x j)

2σ2 e−(τ−τxi−τx j )
‖xi−x j‖

2

4σ2 ,

i = 1, 2, · · · ,N,

(9)

where N is the user-specified number of sites. 17

Initialization. We need to initialize a user-specified number of 18

sites for further optimization. It is natural that a set of uniform- 19

ly distributed sites are helpful for reducing the number of itera- 20

tions. In our implementation, a user-specified number of initial 21

seeds X are generated on S with a uniform random distribution 22

according to original surface areas. 23

Choice of σ. Basically, σ is related to the influence range of 24

each particle. If the distance between two particles is larger 25

than 5
√

2σ, then the force between them is negligible. In this 26

work, we set σ = c
√
|S |/N, where |S | denotes the total area of 27

the entire surface, and c is an empirical coefficient and typically 28

set to 0.25. 29
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Fig. 4. The offset surfaces at various distances. When N=10K, it requires
about 2.5 seconds for generating the offset surface.

Computation of the objective function. Obviously, computing1

the objective function E, as well as its gradients, requires O(N2)2

time. To reduce the computational cost, we need to ignore those3

terms that almost do not contribute to E. In our implementation,4

we consider only the particle pairs that have a distance less than5

5σ. To quickly filter out those redundant particle pairs, we use6

the Approximate Nearest Neighbor (ANN) library (Mount and7

Arya, 1998) to achieve this purpose.8

Hard constraint of the offset distance. During each iteration
of optimization, we need to adjust the sites such that they are
constrained on the offset surface. Let xi be one site and xS

i be
its projection on the primitive surface S . Then xi should be
updated to x′i as follows.

x′i = xS
i + d ×

xi − xS
i

‖xi − xS
i ‖
. (10)

Termination condition. The termination condition is set to

max
i
|
∂E
∂xi
·

xi − xS
i

d
| < 10−6. (11)

That is to say, even if we perturb these sites along the tangent9

plane, the objective function will not decrease any more.10

Site connection. When the optimization converges, the sites11

are uniformly distributed on the offset surface, and thus it is12

very easy to build connection between them. In our implemen-13

tation, the final mesh is extracted as the restricted Delaunay tri-14

angulation (RDT) (Yan et al., 2009) restricted on the surface.15

Algorithm 1 shows the pseudo-code. Fig. 4 shows an exam- 16

ple of offsetting the Squirrel model with various distance set- 17

tings. When N = 10K, it requires about 2.5 seconds for gener- 18

ating the offset surface. 19

Algorithm 1: Generating high-quality polygonal offset sur-
face

Input: A surface S , a user-specified offset distance d, and
N initial sites.

Output: A polygonal offset surface.
while maxi |

∂E
∂xi
·

xi−xS
i

d | ≥ 10−6 do
Update the ANN data structure for the current site
collection X;
for each site xi do

Get neighboring sites from ANN;
for each neighboring site x j do

Compute Ei j using Ei j = e−(τ−τxi−τx j )
‖xi−x j‖

2

4σ2 ;
Compute F i j using F i j =

−
(τ−τxi−τx j )(xi−x j)

2σ2 e−(τ−τxi−τx j )
‖xi−x j‖

2

4σ2 ;
end
Sum F i j with regard to j to get F i;

end
Sum Ei j to get the total energy E;
Feed the scalar E and the vector F into the L-BFGS
solver to get updated locations of X;
Adjust X such that the sites are located on the offset
surface; See Eq. (10);

end
Connect the sites to output the polygonal offset surface.

5. Experimental Results 20

We implemented our algorithm in Microsoft Visual C++ 21

2013. All the experiments were conducted on a computer with 22

Intel(R) Core(TM) i7-6700QM CPU 2.60GHz and 4GB mem- 23

ory. All the models are scaled into a bounding box with a unit- 24

length diagonal. In the following, we will evaluate our algorith- 25

m in meshing quality, performance, topological correctness and 26

accuracy. 27

5.1. Scalability 28

Figure 5 shows four examples where the inputs are respec-
tively a polygonal mesh (Figure 5(a)), an implicit function
((Figure 5(c))

(x2 + 9/4 × y2 + z2 − 1)3 − x2 × z3 − 9/80 × y2 × z3 = 0,

a parametric form (Figure 5(e)):

x = (1 − cos u) × sin u × cos v,

y = (1 − cos u) × sin u × sin v,

z = cos u. u, v ∈ [0, 2π]
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Fig. 5. Our algorithm supports multiple kinds of inputs: polygonal surfaces
(a), implicit functions (c), parametric surfaces (e) and point clouds (g). The
middle column shows the offset surfaces, while the right column shows the
angle histograms.

and a point cloud (Figure 5(g)). The four examples show that1

our algorithm supports various kinds of input models. The tar-2

get number of vertices is set to 10K. It requires about 2.5 sec-3

onds to compute each offset surface. The general adaptability4

distinguishes itself from the existing approaches for offsetting5

surfaces.6

5.2. Meshing quality7

We use the angle regularity to measure the meshing quality.8

Let θmin be the smallest angle, and θavg be the average angle.9

In Figure 5, we give the statistics plot of angles in (b,d,f,h). It10

can be seen that most of the angles are very close to 60o, which11

shows our resulting meshes have an overall desirable meshing12

quality.13

In order to compare our algorithm with the signed distance14

field based method (Liu and Wang, 2011) and the famous soft-15

Table 1. Comparison of meshing quality on the Teddy surface (Fig. 6).
Method Gavg Gmin θavg θmin

Ours 0.144337 0.041400 56.21 23.02
Liu & Wang, 2011 0.105587 0.010841 47.03 1.4699

Rhino 0.089958 0.009124 39.87 0.9021

Fig. 6. Our algorithm has a significant advantage of yielding a high-quality
mesh. Here the target number of vertices is 17K and the offset distance is
set to 0.05.

ware Rhino, we compute the offset surface for the Teddy model 16

shown in Figure 6. Table 1 gives the statistics of Lo values (Lo, 17

1985): G(4ABC) =
S 4ABC

|AB|2+|BC|2+|CA|2 . Let Gmin be the lowest qual- 18

ity value, and Gavg be the average value. Table 1 shows that our 19

algorithm has a significant advantage of meshing quality. Note 20

that Gavg is very close to
√

3/12, which implies that our algo- 21

rithm is able to generate a high-quality mesh with most of the 22

triangles being approximately equilateral. Furthermore, our al- 23

gorithm exhibits the merit of feature alignment, which is the 24

second advantage. 25

For most of the existing approaches, they have to deal with 26

the self-intersection issue when the offset distance is relatively 27

large; See the close-up views in Figure 6(c). Although a num- 28

ber of techniques (Liu and Wang, 2011) have been proposed for 29

obtaining intersection-free offset surfaces, it is not easy to ac- 30

complish this step in a robust and efficient manner. However, 31

our algorithmic framework has no need to deal with the self- 32

intersection issue since every moveable site is required to keep 33

the offset distance away from the base surface, as shown in Fig- 34

ure 6(a). This is another advantage of our algorithm. 35

In addition, it seems to work well by performing a series of 36

mesh boolean operations (Jacobson et al., 2016) across a suffi- 37

ciently large number of spheres centered at the original surface. 38

We use the Bird model in Figure 7(a) for test. If we use 1K 39

spheres to generate the offset surface, it requires about 2K sec- 40

onds to get a poorly triangulated result; see Figure 7(c). If we 41

Fig. 7. Comparison of meshing quality between ours (b) and the boolean
operation based method (c). The latter cannot work for offsetting in prac-
tice.
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Table 2. Time statistics with various inputs.
Model Figure #Tri Offset Td

∗(s) Tc
#(s) Ttol(s)

Heart 5(c) 10k −0.05 0.851 0.8898 1.7408
20k 1.983 1.7479 3.7309
30k 3.088 2.5609 5.6489

Squirrel 4(e) 20k −0.1 2.184 1.8278 4.0118
30k 3.657 2.6977 6.3547
40k 5.037 3.658 8.695

Dog 1 40k 0.03 5.670 3.9529 9.6229
80k 13.988 5.3058 19.2938
100k 25.173 10.3076 35.4806

Moai 3 60k 0.02 14.501 4.8149 19.3159
100k 27.016 9.8513 36.8673
200k 86.99 20.0724 107.0624

∗Td–optimization time #Tc–polygonal mesh generation time

use more spheres, a numerical issue occurs due to the fact that1

the meshing quality becomes worse and worse. By contrast,2

our method requires only 30 seconds to generate a high-quality3

triangulated offset surface with 100K faces; see Figure 7(b).4

5.3. Efficiency5

Recall that we use the L-BFGS solver to optimize the sites,6

which exhibits a super-linear convergence in our experiments.7

Furthermore, we use the Approximate Nearest Neighbor (AN-8

N) library to filter out those pairs that contribute little to the9

objective function. In detail, we omit the site pairs whose dis-10

tances exceed 5σ. The two techniques are central to guarantee11

the high performance. In this subsection, we respectively show12

the overall performance and the convergence rate.13

Fig. 8. Performance plots.

In order to test the overall performance, we set the target14

number of the offset surfaces of the Kitty and Duck model to15

vary from 1K to 100K and show the performance plots in Fig-16

ure 8. In Table 2, we respectively give the timing costs spent17

in the optimization of particle system Td and those in generat-18

ing the final mesh Tc, which shows the high performance of our19

algorithm. For example, generating the offset surface of 80K20

triangles for the Dog model requires about 19 seconds while21

the voxelization-based method (Pavi and Kobbelt, 2008), gen- 22

erating a polygonal offset with poor triangulation, needs about 23

25 seconds. 24

(a) Energy change (b) Gradient change

Fig. 9. The energy and gradient change plots of the Duck model during the
optimization process. The total number of iterations is 102.

In order to observe the convergence rate of our algorithm, we 25

use Figure 9 to show the energy decreasing plot and the gradient 26

decreasing plot for the Duck model (the target offset surface has 27

10K vertices). From the plot, we can clearly see that the objec- 28

tive function, as well its gradient norm, decreases very sharply, 29

which implies that our algorithm has a super-linear convergence 30

rate. 31

5.4. Robust to bad initialization 32

Fig. 10. Our algorithm is robust to bad initialization.

In order to test if our algorithm is robust to initialization, we 33

make 5K sites gathering around the right ear of the Kitten mod- 34

el, as shown in Figure 10(a). From Figure 10(b-g), we can 35

see that the sites gradually spread over the surface until they 36

become uniform, which is due to the repulsion between sites. 37

This shows that our algorithm is able to get a high-quality off- 38

set mesh even if the initial sites are not well distributed. For 39

this example, our algorithm requires 320 iterations and about 40

20 seconds to compute the offset surface. It’s worth noted that 41

an as-uniform-as-possible initial site distribution is helpful to 42

reduce the number of iterations. 43

5.5. Topological correctness 44

It’s easy to know that the topology of an offset surface may 45

be different from that of the base mesh, especially when we 46



8 Preprint Submitted for review / Computers & Graphics (2017)

Fig. 11. Our algorithm has the ability to deal with topology changes, where
d is set to -1.0 in (a) while -1.5 in (b).

Table 3. Error analysis.
Model Figure #Tri Offset() Eavg Emax

Heart 5(c) 20K -0.02 3.626 ×10−6 0.02007
0.02 2.151 ×10−6 0.02100
0.05 2.118 ×10−6 0.05006

Squirrel 4 40K -0.1 4.456 ×10−6 0.010001
-0.05 3.212 ×10−6 0.09000
0.1 1.110 ×10−6 0.010006

Bear 12 60K -0.02 6.403 ×10−7 0.02000
0.02 3.501×10−7 0.02160
0.05 4.342×10−7 0.05004

Dog 1 100K -0.01 9.491×10−7 0.0591
0.05 2.453×10−5 0.04120
0.1 1.24×10−5 0.07005

compute an inward offset surface. Most of existing approach-1

es have to perform an extra step of removal of redundant parts,2

which is tedious and highly non-trivial. Our algorithm, howev-3

er, can naturally guarantee the topological correctness. The key4

lies in that we keep those sites at a constant distance d from the5

base surface during the optimization process. So it is impossi-6

ble to have sites on the redundant parts since the corresponding7

distance in between is not d.8

In Figure 11, we show two examples of inward offset sur-9

faces. It can be seen that the resulting offset surfaces have dif-10

ferent topological structures from the base surfaces and consist11

of multiple connected components, which demonstrates that our12

algorithm has the ability to deal with topology changes.13

5.6. Error analysis14

Generally speaking, our resulting polygonal mesh is not ab-
solutely accurate. We perform error analysis in this way: for
an arbitrary point p on the offset surface, we find its pro-
jection point q on the primitive surface, and then keep down
E(p) = |‖p − q‖ − d|/d. We use average and maximum errors
(Wang and Manocha, 2013) to measure the accuracy:

Eavg =
1
n

n∑
i

E(pi),

Emax = max
1≤i≤n
{E(pi)}.

(12)

Figure 12 visualizes the errors of a family of the Teddy’s offsets.15

Table 3 shows the detailed error statistics. From the statistics we16

Fig. 12. Error analysis. (c) is the input model. From (a), (b), (d) and (e), we
visualize the errors across various offset distances in a color-coded style.

can clearly see that the results are very accurate. 17

We use Figure 13(a) to compare our algorithm with the exist- 18

ing voxelization-based method. It can be seen that our result is 19

much more accurate if measured at the same level of computa- 20

tional cost. Generally speaking, it is hard to set the voxelization 21

resolution for the voxelization-based method. If the voxeliza- 22

tion resolution is too low, the resulting offset surface will have 23

a topological error. But if the resolution is too high, it will take 24

much more time since the computational time is at least cubic 25

to the accuracy parameter. 26

27

6. Limitations 28

In spite of the significant advantages in terms of mesh- 29

ing quality, computational performance, topological correct- 30

ness and feature alignment, our algorithm, in its current form, 31

still has a couple of limitations including: 32

• Accuracy. In Section 5.6, we show that the largest er- 33

rors often occur in the concave regions of the offset surface 34

(assuming offsetting outward). The reason behind lies in 35

the fact that the real offset surface is generally non-smooth 36

around these areas. 37

• Performance. Currently our algorithm cannot compute 38

offset surfaces in real time, which limits its use in some 39

interactive applications. 40

7. Conclusions and Future Works 41

In this paper, we propose a general and fast algorithm to 42

generate a feature-aligned and high-quality triangle mesh of an 43

offset surface based on particle system. The algorithm takes 44
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Fig. 13. Accuracy comparison. (a) shows the plots of the average error
with regard to the computational cost on the Dog model (b). (c) is our
result. For the voxelization-based method, if the voxelization resolution is
too low (32×32×32), the resulting offset surface is broken (d). When the
the voxelization resolution amounts to 64×64×64, it will takes much longer
time. If measured at the same level of time cost, our algorithm is much
more accurate than the voxelization-based method.

L-BFGS as the solver and thus has a super-linear convergence1

rate. Our algorithm supports multiple kinds of inputs, e.g., tri-2

angle meshes, implicit functions, parametric surfaces or even3

point clouds. In the future, we shall give a GPU-based speedup4

implementation.5
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