
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

DrawingInStyles: Portrait Image Generation and
Editing with Spatially Conditioned StyleGAN

Wanchao Su, Hui Ye, Shu-Yu Chen, Lin Gao, and Hongbo Fu∗

Abstract—The research topic of sketch-to-portrait generation has witnessed a boost of progress with deep learning techniques. The
recently proposed StyleGAN architectures achieve state-of-the-art generation ability but the original StyleGAN is not friendly for
sketch-based creation due to its unconditional generation nature. To address this issue, we propose a direct conditioning strategy to
better preserve the spatial information under the StyleGAN framework. Specifically, we introduce Spatially Conditioned StyleGAN
(SC-StyleGAN for short), which explicitly injects spatial constraints to the original StyleGAN generation process. We explore two input
modalities, sketches and semantic maps, which together allow users to express desired generation results more precisely and easily.
Based on SC-StyleGAN, we present DrawingInStyles, a novel drawing interface for non-professional users to easily produce
high-quality, photo-realistic face images with precise control, either from scratch or editing existing ones. Qualitative and quantitative
evaluations show the superior generation ability of our method to existing and alternative solutions. The usability and expressiveness of
our system are confirmed by a user study.

Index Terms—Sketch-based Portrait Generation, Suggestive Interfaces, Data-driven Approaches, StyleGAN, Conditional Generation.
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1 INTRODUCTION

IMAGE generation has been a hot research topic and has
drawn much attention in both the computer graphics

and the computer vision communities, especially due to the
advance of deep learning techniques. Remarkable progress
emerges for image generation solutions based on deep
learning (e.g., generative adversarial networks (GANs) [1]),
in terms of generation resolution [2], subject categories [3],
training data sparsity [4], etc. Among various contents in the
image generation tasks, the human portrait is a preferably
studied subject due to its great need in various applications.
Creating human portraits from sketches is a widely adopted
solution for designers. Image-to-image translation frame-
works (e.g., [5], [6]) are commonly adopted for converting
sketches to images due to impressive generation ability as
well as precise controllability over the generated results.

The recent StyleGAN frameworks [2], [7] achieve state-
of-the-art generation performance for, in particular, por-
trait images. The StyleGAN synthesis network generate
images with latent style vectors. Different spatial resolution
(42 − 10242) layers take the style vectors to control different
visual attributes: from high-level attributes (e.g., pose, face
shape, etc.), smaller-scale facial features (e.g., hairstyle, eyes
open/closed), to the coloring scheme and micro-structure.
Despite the superior performance of StyleGAN, it suffers
from a severe drawback when applied to a portrait creation
scenario: due to its unsupervised training mechanism, Style-
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GAN is not suitable for the spatially conditioned generation
setting. Several works (e.g., [8], [9]) have attempted to
map an input domain to the StyleGAN latent style space,
achieving the indirect control via the latent space. However,
encoding the condition to the style space loses the spatial in-
formation, and thus cannot guarantee the spatial constraint
to be respected after the generation process.

To utilize StyleGAN’s ability in portrait image genera-
tion, we need to provide a precise control regarding the
spatial conditions. Instead of encoding the spatial condi-
tions into the spatially-oblivious compact style codes, we
propose a more aggressive way that transforms the spatial
conditions directly into the StyleGAN synthesis procedure.
Since an efficient way to preserve the condition information
is to maintain the spatial relationships embedded in the
input, we propose to use a spatial encoding scheme to
transform the information contained in the condition input.
The original StyleGAN produces results by progressively
normalizing randomly initialized spatial feature maps with
the guidance of the corresponding style codes. We propose
to eliminate the gap between the condition-encoded feature
and the intermediate spatial feature maps in the StyleGAN
synthesis procedure and modify the pre-trained StyleGAN
synthesis network as an image-to-image translation archi-
tecture.

To achieve the above goal, we present SC-StyleGAN (Spa-
tially Conditioned StyleGAN ), which consists of a spa-
tial encoding module, a spatial mapping module, and
subsequent pre-trained StyleGAN blocks to translate the
spatial condition information to high-quality, large-sized
(1024 × 1024) portrait images. We encode the input con-
dition to a spatial feature map and then process it with a
mapping module before connecting to the subsequent pre-
trained StyleGAN synthesizing flow. We use the encoded
feature to substitute the original intermediates guided by
the early-stage style codes in StyleGAN. This makes the
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Fig. 1. Our DrawingInStyles system helps users with limited drawing skills to produce high-quality portrait images with diversified geometry and
appearance (best viewed with zoom in) from scratch. Our data-driven suggestive interface assists users in interactive refinement of sketches and
semantic maps (Bottom), which provide precise conditions for subsequent image synthesis. Our method also supports high-quality portrait image
editing (e.g., from (d) to (e): changing the hairstyle, making a smiling face; from (a) to (c): wearing glasses) by editing the sketch and/or semantic
map. The minor changes to the input are highlighted in red boxes and zoom-in box. From (b) and (c), it can be seen that the semantic map helps
resolve the ambiguity in the sketch, leading to a more expected result.

input information a spatial constraint in the generation pro-
cess. By training the weights in the encoding and mapping
modules, and fixing the pre-trained weights of the subse-
quent StyleGAN blocks in our SC-StyleGAN, we smoothly
transform the input condition into the intermediate spatial
feature space, thus converting the unconditional StyleGAN
synthesis network to a precise and efficient image-to-image
synthesis module in our system.

The existing sketch-to-image techniques can be classified
into two groups: one requiring accurate sketches as input
(e.g., pix2pixHD [6]) and one allowing rough/incomplete
input (e.g., DeepFaceDrawing [10]). The latter is more
friendly for novices but lacks precise control (see the com-
parison between DeepFaceDrawing and ours in Figure 7).
Our DrawingInStyles falls in the first group and aims to
improve the generation quality (see the comparison between
pix2pixHD and ours in Figure 7). To fill the gap between
these two groups, we propose a suggestive interface, which
helps input rough strokes for retrieving edge-map-like
global face templates for referencing and face components
for explicit refinement.

We observe that using sketches and semantic maps to-
gether allows users to express themselves more precisely.
Based on this key observation and SC-StyleGAN, we present
DrawingInStyles, a novel drawing-based system that allows
non-professional users to create high-quality face images
from sketches and semantic maps, with great ease and
precise control (Figure 1). Our system can be used for
editing portrait images via sketches and/or semantic maps.
Due to the adoption of the StyleGAN architecture, our sys-
tem supports the change of appearance style for generated
results with respect to given reference styles, thus greatly
enhancing result diversity (Figure 1).

We compare our system with existing and alternative
solutions both quantitatively and qualitatively. The evalua-
tions prove that our system produces visually more pleasing
portrait images. The usability of our interface and the ex-
pressiveness of our tool are confirmed by a user study. We
show that our proposed SC-StyleGANconditioning scheme

can be further applied beyond the current facial pre-trained
model, and demonstrate its extension to the LSUN Car and
Church data [11].

2 RELATED WORK

Our work is closely related to the topics of sketch-based
portrait generation, portrait image editing with spatial guid-
ance, and StyleGAN manipulation and conditioning. For
each topic, we discuss only the most related works to ours,
since a comprehensive review on such topics is beyond the
scope of this paper.

2.1 Sketch-based Portrait Generation

Recently, Generative Adversarial Networks (GANs) [1]
and their variations like conditional-GANs [12] have been
widely adopted as generative models for image generation
problems. For example, pix2pix proposed by Isola et al. [5]
has become the backbone frameworks for various image-
and-image translation problems. pix2pixHD by [6] improves
the performance of pix2pix and generates higher-resolution
results given condition images. Scribbler by Sangkloy et
al. [13] takes as input sketches and colorizes them under
the guidance of user-specified color strokes. Such meth-
ods and subsequent works (e.g., [6], [14]) directly based
on them generate results in a pixel-wise correspondence
manner, which is similar to our SC-StyleGAN. However,
our SC-StyleGAN generates results with higher quality (see
comparisons in Section 5.2) and supports easy change of
coloring and texture details due to the adoption of Style-
GAN framework. Limited by the pixel-wise correspondence
nature of the above methods, they require input sketches to
be highly similar to the edge maps used for model training
to generate quality results, and thus they are not friendly for
users with little drawing skills. We circumvent this issue by
incorporating a data-driven suggestive drawing interface,
thus allowing users to quickly find template sketches and
update individual face components interactively.
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Several attempts have been made towards generat-
ing images from imperfect sketches. For example, LinesTo-
FacePhoto by Li et al. [15] trains a conditional-GAN em-
bedded with a self-attention module to solve the input
incompleteness issue. Li et al. [16] employ a spatial attention
pooling module to implicitly convert a deformed semantic
boundary to the data flow trained with an edge-aligned
input, to get a realistic face image. Yang et al. [17] process
a freehand sketch via multi-scale dilation operations, which
encode a potential stroke field, and then use a refinement
module to get a predicted complete sketch. Although the
above methods have a better ability in handling imperfect
sketches than pix2pix [5], their ability of handling freehand
sketches and generating quality is still limited. DeepFace-
Drawing by Chen et al. [10] achieves the state-of-the-art
performance for the task of generating realistic face images
from rough sketches. The key to their solution is the projec-
tion of an input rough sketch to component-level manifolds
for sketch refinement before the image generation process.
However, the refined sketch is implicitly encoded in this
process and users have to control the generated results
by interactively updating the rough sketch, instead of the
intermediate features, thus losing precise control of final
results. We take a different route from such methods by
separating the sketch refinement and image synthesis proce-
dures: we provide a novel interface for users to interactively
and explicitly refine an input sketch before sending it to the
image generation module. Compared to DeepFaceDrawing’s
implicit all-in-one learning process for sketch correction
and image generation, our method provides more accurate
control and presents higher quality of the generated results
(see comparisons in Figure 7).

In addition, DeepFaceDrawing requires a set of aligned
faces under the same poses for learning the component-level
manifolds and DeepFaceDrawing has been demonstrated for
generating frontal faces only. The current implementation of
DeepFaceDrawing handles side-view face generation poorly,
as shown in Figure 2 in the supplemental material. Extend-
ing DeepFaceDrawing to handle non-frontal face generation
(e.g., by preparing properly sets of training data) is possible
but the lack of precise control will still be an issue.

2.2 Portrait Image Editing with Spatial Guidance

Image editing aims to change certain target regions or at-
tributes of an image according to user inputs while keeping
the rest of the image intact and presenting an overall com-
patible visual appearance. Here we only focus on the deep
learning based image editing works using spatial editing
guidance.

Park et al. [18] propose a spatially-adaptive normal-
ization layer for synthesizing photo-realistic images given
an input semantic layout. Their system supports effective
image editing via changing the semantic map of a target
image. Gu et al. [19], Lee et al. [20], and Zhu et al. [21]
propose systems enabling face-component shape editing via
altering the semantic map of a target face. They also support
the control of the target face’s appearance by providing
encoded features of a reference appearance image with an
associated semantic map and applying them back according
to the original face map. Similar to the above methods,

our system also enables users to edit the face component
shapes according to the edited semantic map. However, due
to the adoption of StyleGAN in our framework, changing
the appearance of the target image requires only a reference
style code, rather than a face image together with its cor-
responding semantic map. In addition, we propose to use
sketches together with semantic maps, since the former is
more flexible for specifying local geometric details.

Another widely adopted medium for image editing is
the sketch. Sketch-based image editing often employs the
design idea of sketch-guided image inpainting, which fills a
target missing area with the structure provided by an input
sketch while referencing the neighboring known areas in
generating the textures and colors of the missing area to get
the final results. The method of Yang et al. [17] follows this
idea for sketch-based face editing but the control preciseness
and generation quality are limited since their method is de-
signed for tolerating drawing errors. FaceShop by Portenier
et al. [22] and SC-FEGAN by Jo and Park [23] also adopt
the idea of image inpainting and present high-quality face
editing results with simple guiding sketches and colored
strokes within local regions. A similar idea is adopted by
Yu et al. [24] to achieve image completion with mask and
sketch guidance. Although previous works have proposed
various mechanisms to improve the compatibility between
the synthesized and untouched regions, their results might
still exhibit incompatibility artifacts. Another problem is
that since the textures and coloring details of the region
of interest are obtained from the neighboring regions, when
the editing area grows, less referencing information remains,
which further deteriorates the resulting quality. Our method
takes a different path and achieves face editing by directly
modifying the sketch and/or the semantic map derived
from an input image, leaving the coloring and texture de-
tails synthesized by the subsequent StyleGAN layers using
the reference style codes derived from the original image,
thus ensuring the global compatibility as well as the detail
faithfulness.

DeepFaceEditing proposed by Chen et al. [25] separates
the appearance and geometry in a local-to-global manner
and achieves state-of-the-art portrait image editing per-
formance. It provides a unified framework to extract the
geometric representation from both sketches and real im-
ages, and to obtain the appearance from another network.
DeepFaceEditing adopts a cycle-consistent manner in training
the network for synthesizing results from the disentangled
appearance and geometry. Our DrawingInStyles leverages
the novel SC-StyleGAN to encode the geometric infor-
mation from sketches and semantic maps and utilizes the
style codes injected to the subsequent StyleGAN layers in
synthesizing the appearance. Compared to DeepFaceEditing,
our method provides higher-quality generation results with
more variants (e.g. poses, accessories, etc.), as shown in
Figure 8.

Previous methods incorporate multi-modality inputs in
either heterogeneous or homogeneous way. Gu et al. [19],
Lee et al. [20], Zhu et al. [21] and Chen et al. [25] used
multiple input in a heterogeneous way, they extract geome-
try and appearance information from different sources. For
Portenier et al. [22], Jo and Park [23], Yu et al. [24] and our
method adopt a homogeneous way. In these method, inputs
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of various forms provide complementary information of
each other, which lead to a better representation of the
target. We propose to use both sketches and semantic maps
based on the observation that semantic maps are efficient in
defining regions while sketches are suitable for representing
structures.

2.3 StyleGAN Manipulation and Conditioning

The portrait image generation quality has been improved
over the past years, and the recently proposed Style-
GANs [7], [26] achieve state-of-the-art visual quality. To
utilize the rich semantic information in the latent space and
exploit the superior generation ability, numerous methods
have been developed on top of the StyleGAN architecture
and achieve remarkable progress for various semantic ma-
nipulation. The manipulations are achieved by latent space
analysis [27], [28], utilizing pre-trained classifiers [29], [30],
controlling a 3D morphable model [31], etc. Different from
the above methods for high-level semantic manipulation,
ours applies a more direct spatial control over the generated
results, achieving the pixel-wise conditioning for the Style-
GAN. To achieve semantic manipulation on a given image,
the existing methods (e.g. [29], [31]) invert the image to the
style latent space, and then apply the designed operations
to the inverted latent style codes. Existing inversion meth-
ods can be roughly divided into three categories: directly
optimizing the latent code to minimize the distance to a
reference image [32], [33], mapping an image to a latent code
[8], [34], and the hybrid of the two [35]. The first category of
inversion methods finds style codes in the latent space from
a random or projected starting point, thus requiring further
time and computation for input inversion.

The second category of the above mentioned inver-
sion methods is a promising route to be modified as an
image-to-image translation architecture. Richardson et al.
[8] propose an image-to-image translation framework called
pixel2style2pixel (pSp), which extends an encoder network
from the StyleGAN synthesis module and produces high-
quality image embedding results. They extract the coarse-
to-fine levels of features with a feature pyramid network,
and then channel the extracted features to the StyleGAN
synthesis layers to obtain translated results.

Several attempts have been made to support the Style-
GAN spatial control. Alharbi and Wonka [36] feed multiple
noise codes through individual fully-connected layers to
spatial noise inputs to control specific parts of generated
images. StyleMapGAN by Kim et al. [37] converts the style
codes to spatial feature map in guiding the normalization
process in StyleGAN synthesis. Barbershop by Zhu et al.
[38] presents a novel latent space for different sources and
fuses the source latent codes according to the semantic mask
for image blending. Different from Barbershop, our SC-
StyleGAN encodes a sketch image to a spatial feature map
before directly injecting it to the spatial layer of the Style-
GAN synthesis network, replacing the early stage of the
coarse feature map generation process, to transform a sketch
image to a portrait image. The spatial feature map better
preserves the stroke information than the compact style
code and thus presents better sketch-image corresponding
relations (see a comparison with pSp in Figure 7).

3 METHODOLOGY

In this section, we elaborate the details of the portrait
image generation process. We first introduce the proposed
SC-StyleGAN architecture (Section 3.1), then present the
objective function (Section 3.2) and finally elaborate the
network training strategy (Section 3.3).

3.1 SC-StyleGAN Architecture
StyleGAN The original StyleGAN synthesis network takes
an 18 × 512 style code to its corresponding 18 input layers
and generates a high-quality image. Its synthesis process
starts from a randomly initialized constant feature map of
spatial resolution 4 × 4 and grows by the factor of 2 with
the upsampling operations, and finally get a 1024 × 1024
resulting image. In the progressive generation process, each
style block takes as input a 1 × 512 style code in the
transformation of the weights, which are associated with the
subsequent convolution operation to control the generation
process. StyleGAN employs this mechanism to control the
generated attributes with the style code inputs. The original
paper of StyleGAN [7] illustrates the effects for coarse
(42 − 82), middle (162 − 322), and fine (642 − 10242) styles,
which correspond to the high-level attributes (e.g., pose, face
shape, etc.), smaller-scale facial features (e.g., hair style, eyes
open/closed), and the coloring scheme and micro-structure,
respectively.

SC-StyleGAN To achieve our conditional generation
goal, we incorporate the sketch and semantic map to de-
termine the spatial attributes, which suit the purposes of
the coarse and middle styles of the original StyleGAN
(“High-Level Style Feature” in Figure 2). As illustrated in
Figure 2, our SC-StyleGAN consists of two sub-networks: the
spatial encoding network aims to map the input conditions
to intermediates corresponding to the results of the coarse
and middle style controlled layers; the synthesis network
utilizes the pre-trained layers of the original StyleGAN
synthesis network and takes as input our spatial encoded
intermediates to generate a synthesized image.

Specifically, in our spatial encoding network, we propose
two encoding modules that map the 512 × 512 sketch and
the 512 × 512 semantic map to spatial feature maps of size
64 × 256 × 256 independently. The resulting two feature
maps are concatenated in the channel dimension, resulting
a combination (size 128 × 256 × 256) of the two modalities
of conditions before going through the subsequent encoding
process. The combined feature map is encoded to the spatial
resolution of 32 × 32, which matches the size of the feature
map in the StyleGAN synthesis module in the coarse to
middle styles (42 − 322). Before sending to the synthesis
network, we pass the feature map to 40 ResNet blocks (the
upper orange dashed rectangle in Figure 2) to make it better
match the intermediate feature map in the original synthesis
network. Similar to the procedure of producing the spatial
intermediate feature map, we propose another branch of 5
ResNet blocks from the embedded feature map (the lower
orange dashed rectangle in Figure 2) to generate a 32 × 32
intermediate image, which also matches the counter part in
the original StyleGAN synthesis module. In the subsequent
generation process, we replace the intermediate feature map
and image with the feature map and image embedded using



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Spatial Encoding Network

Synthesis Network

A A A
A A A

Spatial
Feature

Spatial
Feature

Spatial
Image

Spatial
ImageA

Low-Level Style FeatureHigh-Level Style Feature

Fake Image

Synthesized Ground Truth

4 4×

11 512×7 512×

40-ResBlocks

5-ResBlocks
Sketch

Semantic Map

Fig. 2. Network architecture of SC-StyleGAN. Our SC-StyleGAN consists of a spatial encoding module (in orange) and a subsequent pre-trained
StyleGAN synthesis module (in cyan). We feed the input sketch and semantic map into individual encoding blocks before being merged using
concatenation and fed to a uniform encoding branch to get the spatial feature. The spatial feature is further processed by two separate branches
with 40 and 5 ResNet blocks to produce spatial feature map (in light green) and spatial image (in light purple). The spatial encoding module aims
to replace the intermediate feature map (in dark green) and the intermediate image (in dark purple) by the original pre-trained high-level synthesis
sub-network (in green) with the counterparts encoded from the sketch and the semantic map. Our network takes as input a sketch and a semantic
map with the paired high-level style features (7 × 512) and a randomly selected low-level style features (11 × 512) from the dataset to obtain the
synthesized ground truth in guiding the spatial encoding module to converge. The synthesized fake image is produced according the workflow
indicated with the solid orange lines and the synthesized ground truth is generated following the dashed green line flow.

our spatial encoding network, as illustrated in Figure 2. Each
encoding block consists of one convolution layer with stride
2, leaky ReLU activation, and a normalization layer.

3.2 Objective Function
Since the goal of our SC-StyleGAN is to encode the spatial
constraints for the StyleGAN synthesis process while pre-
serving the generation quality of the pre-trained StyleGAN,
we need to precisely map the encoded condition to its
counter parts in the original synthesis process. To achieve
this, we formulate the objective function of the training
process as follows:

L(Igt, Isyn) =λL1
L1(Igt, Isyn) + λLGP

LGP

+λLLP
LLP + λLFM

LFM ,
(1)

where L1(·, ·) is the mean abstract difference function, LGP

and LLP stand for the global perceptive loss and local
perceptive loss, respectively. The original StyleGAN uses an
adversarial loss in guiding the network convergence, here
we use the pre-trained StyleGAN and aim to guide our
encoding module converging to the original intermediate
space.

We incorporate the perceptive loss in our objective func-
tion to enhance the guidance of the synthesis process. Since
we replace the spatial intermediates in the original Style-
GAN workflow with our encoded counterparts, the volume
of the optimization targets (i.e., intermediate feature maps
and intermediate image) is larger than that of the existing
latent space optimization methods. Thus apart from the
commonly used perceptual loss applied over the full scale
of the generated image, we further incorporate a perceptual
loss in the local patches. Inspired by [39], we randomly

Fig. 3. Illustration of the effects of the components in the objective func-
tion. (a): No L1 Loss, (b): No Perceptual Loss, (c): No Local Perceptual
Loss, and (d): Full Method.

crop K patches (K = 20 in training) from the generated and
ground-truth images and compute the local perceptual loss.
Here we chose K = 20 to balance the computation cost and
final generation quality: when K > 20, our method showed
no further quality gain; when K < 20, we experienced
quality degeneration.

We measure the global perceptive loss by resizing the
synthesized and target images to spatial size 64 × 64, and
measure them with the perceptual metric (LPIPS [40]).
Mathematically, the global perceptive loss LGP and the local
perceptive loss LLP are formulated as follows:

LGP (Igt, Isyn) = LPIPS(Iregt , I
re
syn),

LLP (Igt, Isyn) =
1

K

K∑
k=1

LPIPS(Ikgt, I
k
syn),

(2)

where LPIPS(·, ·) represents the perceptual measuring
function, Iregt and Iresyn are the resized ground truth and
synthesized images, respectively. Ikgt and Iksyn represent
the k-th randomly cropped ground truth and synthesized
patches in each step, respectively.
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Fig. 4. An illustration of different replacement schemes in our SC-
StyleGAN generation process. We show two examples with randomly
selected low-level styles.

To further ensure that our synthesized result approxi-
mates to the ground truth, we add another feature matching
loss in the objective function:

LFM =
1

N

∑
l

‖Gl(gt)−Gl(syn)‖1, (3)

whereGl(·) is the l-th resolution block (with the correspond-
ing spatial resolution of 2l) output feature map of the pre-
trained StyleGAN synthesis network. N is the number of
calculated blocks. Here we calculate the L1 norm between
the synthesized and ground truth generation process af-
ter the replacement resolution block (l ∈ {6, 7, 8, 9} and
N = 4). Figure 3 illustrates the effects of each component in
the objective function. For the details of the ablation study,
please refer to Section 5.1.

3.3 Training Strategy

The training of the SC-StyleGAN is illustrated in Figure 2.
To disentangle the high-level style geometries from the low-
level style appearances and augment the existing training
dataset, we adopt a dynamic guiding scheme by synthesiz-
ing the target image in each iteration. To achieve this, we
generate the synthesized ground-truth target by feeding the
pre-trained StyleGAN synthesis network with input-paired
high-level style codes (42−322) and randomly selected low-
level style codes (642 − 10242) from the recorded style code
dataset. Our SC-StyleGAN synthesizes an image by feeding
a sketch and a semantic map paired with the high-level style
codes to the spatial encoding network to get an intermediate
feature map and an intermediate image. We then inject the
intermediates to the subsequent synthesis network with the
same low-level style codes (642 − 10242). We freeze the
parameters of the blocks subsequent to the replacement

of the encoded condition intermediates in the synthesis
network. We also tried injecting the encoded feature map
to different spatial layers (see Figure 4 for an illustration).
Please refer to Section 5.1 for quantitative evaluation and
analysis regarding the different replacement schemes.

4 SUGGESTIVE DRAWING INTERFACE

To assist users in generating high-quality portrait images
with ease and precise control, we propose a data-driven
suggestive interface. Our interface supports image creation
from scratch or by editing existing images. The default
mode is to create portrait images from scratch. It consists
of three stages to help non-professional users produce high-
quality portrait images, namely, global selection, local detail
suggestion, and sketch and semantic map modification. It sup-
ports an explicit and coarse-to-fine sketch refinement and
mask modification process. To edit an existing image, the
user loads an image from the local source, and our system
extracts its corresponding sketch and semantic map. In this
case, our system automatically skips the global selection and
starts from the local detail suggestion stage. Please refer to
the accompanying video for the interaction process.

4.1 System Design

Global Selection We assist users in globally retrieving
relevant faces from the dataset by drawing a coarse contour
of a target face. Since novice users are usually not very good
at drawing faces with proper proportions, we use the user-
drawn strokes in this stage only for retrieval. Our main goal
here is to allow users to quickly select a sketch template by
simply drawing several strokes.

Drawing faces under various poses is also challenging
for users with little drawing skill. To help users easily sketch
a face under a specific pose, we provide three pose sliders
(Figure 5)(a) corresponding to Euler angles for 3D rotation
to specify a certain pose. Every time a user changes any
of the rotation parameters, our system returns a set of face
sketches that have their poses as close to the user-specified
pose as possible. We extract the contours of the top-20 faces
and merge them as one guidance image semi-transparently
displayed on the drawing canvas, similar to ShadowDraw
[41] and AverageExplorer [42].

When the user draws on top of the guidance, our system
re-ranks the face sketches retrieved from the previous step,
based on their similarity (Section 4.2) to the user-drawn
strokes, and displays the top-20 re-ranked face sketches
at the bottom of the interface (Figure 5(e)). The user can
select one of them and the system shows the selected one
to replace the user-drawn strokes in the drawing canvas for
further refinement. Each modification will trigger a new re-
ranking of the sketch templates.

Local Detail Suggestion When finishing global selection
in the face creation mode or loading an existing image in
editing mode, the user can switch to the local detail sugges-
tion stage for component retrieval and modification. In this
mode, the user can click on a specific button in the left-most
column (Figure 5(d)) to select a semantic component label
of interest and the system will then display a corresponding
red rectangle on the sketched face.
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Fig. 5. A screenshot of our sketching interface for portrait image syn-
thesis. The sketched strokes and semantic map are displayed in the
left canvas. The corresponding synthesized result and a reference style
image (in the top-right corner) are displayed on the right. The pose
sliders on the top (a) are used in the global selection step to find
faces under a specific pose. The user can switch the modes of global
selection, local detail suggestion, sketch and mask editing in (b) and (c).
The leftmost buttons (d) allow mode switching for selecting, drawing, and
editing specific components. The scroll view at the bottom (f) displays
the global and local component retrieval candidates, and is empty in the
stage of sketch and mask modification (e).

For each selected component, our system retrieves and
displays the top-20 component candidates for selection. For
a selected component candidate, it is placed underneath the
currently sketched component at the corresponding position
in a semi-transparent layer for previewing. The user can
either keep the previewed component to replace the current
component sketch by clicking on “Replace” button or refine
the current component sketch according to the previewed
guidance. Once finishing the refinement, the user presses
the “OK” button to remove the component guidance in the
sketching canvas.

During this process, the user can also adjust the position
of the individual component sketch/guidance by simply
dragging the red rectangle to a desired position. The user
can modify the current sketch and start a new retrieval of
the component. The local semantic map will replace the
original one with the “Replace” button clicked, otherwise,
the original semantic map remains intact.

Sketch and Semantic Map Modification After local
component refinement, the user can switch to the sketch
and semantic map modification stage. The user can select a
specific semantic label (Figure 5(d)) to modify the semantic
map. In this stage, the user can see the synthesized face
image updating in real time in the output canvas. The
sketch, semantic map, and result image can be displayed
on the sketching canvas for reference by toggling the check-
boxes. The user can load a reference image for defining the
appearance of the synthesized portrait image. Otherwise a
default appearance reference image will be used.

4.2 Implementation

We train a “global contour” embedding network to con-
struct the global repository for the initial global retrieval.

Similar to DeepFaceDrawing [10], we train six component
embedding networks, namely, “facial skin”, “nose”, “left-
eye”, “right-eye”, “mouth”, “glass”, “hat”, and “hair”, re-
spectively, to encode the component sketches for construct-
ing the component repositories. Each individual embedding
network is an auto-encoder architecture. The component
sketch goes through the corresponding encoder network via
a compact bottleneck layer to get a 512-dimensional compact
representation before feeding it to the decoder network.
We adopt a self-supervised learning scheme, which aims to
reconstruct the input with a L1 loss as the objective function.
When a query sketch comes, the corresponding trained
component encoder first processes it to a compact represen-
tation, and then the system uses the resulting representation
as query to retrieve the most similar components in the cor-
responding repository. Accessories like glasses and hats are
directly extracted from the dataset and organized according
to their portrait poses. During selection, we simply use the
target portrait pose as a query and select portraits with the
accessory to obtain the accessory candidates to choose from.

To edit an existing image, we need to obtain its sketch
and semantic map. For the image-to-sketch process, we train
a U-net [43] using our existing sketch-image pairs. To train
our model as a conditional generation framework, we need
a large-scale dataset of condition-portrait pairs. A sketch
and a semantic map together form the conditions to guide
portrait image generation. We take advantage of the gener-
ation ability of the StyleGAN framework (StyleGAN2 [26]
throughout this paper) in constructing the training dataset
by collecting a large series of generation results. We first
sample a large collection of random vectors from a normal
distribution before feeding them to the mapping network
of StyleGAN. We then input the resulting latent style codes
from the mapping network to the synthesis network and
obtain the portrait images corresponding to the style codes.
Up to now, we get a collection of pairs of latent codes and
images. To get its semantic map, we use BiSeNet [44] pre-
trained on the CelebAMask-HQ dataset [20]. The details
of the data preparation can be found in our supplemental
materials. Once the user loads an image from an external
source, our system sends it to the trained modules and
gets the resulting sketch and semantic map for subsequent
editing process.

5 EXPERIMENTS

We have conducted extensive experiments to evaluate the
effectiveness and usefulness of our method, both quantita-
tively and qualitatively. The experiments were done on a
server PC with Intel i7-7700 CPU, 32GB RAM and a single
GeForce 1080 Ti GPU. Our method generates results with
0.11 second per image on average, and thus supports edit-
ing at an interactive rate. We implemented the suggestive
drawing interface and conducted the drawing sessions on
a Surface Pro 7 with a Surface Pen. The user inputs and
generated results were transmitted between the client and
server PC under http protocol.

In this section, we first show the quantitative results and
the analysis of the current architecture and alternative con-
figurations of our method with an ablation study in Section
5.1. Comparisons on the generation abilities among different
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Config No L1 No Pcpt No LP No GP No FM Full
L1 0.239 0.108 0.115 0.095 0.100 0.098

Local 0.519 0.253 0.230 0.177 0.185 0.177
Global 0.290 0.116 0.088 0.073 0.073 0.067

FID 378.174 56.317 40.787 33.016 35.770 30.265
TABLE 1

Quantitative results of the ablation study on the terms in the objective
function. “Pcpt”, “LP”, “GP”, and “FM” mean the perceptual loss in total,

local perceptual, global perceptual, and feature matching losses,
respectively.

Config Mask Sketch Both(32× 32) 16× 16 64× 64
L1 0.121 0.105 0.098 0.120 0.149

Local 0.223 0.190 0.177 0.217 0.261
Global 0.103 0.076 0.067 0.091 0.132

FID 46.372 35.116 30.265 33.041 62.506
TABLE 2

Quantitative evaluation on the different input choices and replacement
schemes.

input schemes and alternative methods are introduced in
Section 5.2. We then compare our method with the state-of-
the-art portrait editing solutions in Section 5.3. The usability
of our system is confirmed by a user study, as elaborated
in Section 5.4. In Section 5.5, we further compare the visual
quality of results using our method and alternative solutions
by a perceptive study. We demonstrate that our proposed
conditioning ideas can work beyond faces by applying them
to the LSUN Car and Church dataset [11] in Section 5.6. For
more generation results, please refer to our accompanying
video and the supplemental materials.

5.1 Ablation Study

To validate the impact of different terms in our objective
function (Equation 1), we conducted an ablation study
by omitting each component loss in turn in the network
training process. We evaluated the generation results by
using the test set as input with the corresponding recorded
latent styles, and comparing the reconstructed results with
the ground-truth images. We measured the results using L1

loss, local perceptive loss with LPIPS (randomly cropped 20
corresponding patches from both the generated and ground-
truth images, as done in the training process), global percep-
tual loss with LPIPS, and Fréchet Inception Distance (FID
[45]). Table 1 shows the quantitative comparison results.

From Table 1 we can see that the L1 loss provides the
main optimization direction, as also confirmed by Figure
3(a). The incorporation of the perceptual losses improves
the quality significantly. Without these losses the generated
results exhibit blurry artifacts, especially for regions other
than the main facial components (e.g., hair region, Figure
3(b)). Specifically, the local perceptive loss provides sharp
details in the generated results. With the global perceptual
loss alone, the generated results may lose fine details (see
the blurry mouth region in Figure 3(c)) due to the resizing
operation from 10242 to 642. The feature matching and
global perceptual losses further refine our network opti-
mization. Although the quantitative metrics show limited
increments and no significant visual quality improve with
these two losses, the incorporation of them accelerates the
convergence.

As mentioned in Section 3.3, we have attempted to
replace the intermediates in different spatial resolutions.
We changed the encoded intermediate sizes by adjusting
the number of convolution blocks in the spatial encoding
network. We experimented with the replacement in spatial
resolutions of 16× 16 and 32× 32, and measured the gener-
ated results with the same metrics as above. We report the
quantitative results in Table 2 Columns 3–5. It can be seen
that the current 32 × 32 replacement scheme presents the
best performance. Besides, Figure 4 illustrates an example
of results with the different injection schemes.

In this experiment, we fed each individual sample with
two sets of randomly selected low-level styles to get the
target portrait with different appearances. We can see that
the results of spatial resolution 64 × 64 (Figure 4(d)) are
blurry. This is mainly because larger injection resolution
involves more parameters in the encoded intermediates,
which is hard to precisely match. This confirms the longer
time consumption in training the model . This phenomenon
also verifies the quantitative results in Table 2. Despite the
reasonable performance of test set reconstruction of the
smaller spatial resolution (16 × 16) injection model, the
qualitative results present obvious artifacts: in Figure 4(b),
we can easily notice that with different low-level styles,
the results present high-level semantic changes (e.g., gender
change in both cases, beard adding in the second case),
which is usually not desirable. The referencing style codes
in the 16×16 injection setting also contain certain high-level
information, and they are interpreted by the subsequent syn-
thesis network, thus presenting high-level semantic changes
in the example.

5.2 Evaluation on Generation Performance

We propose to employ both sketch and semantic map in
our generation process. In this experiment, we validated our
adopted input scheme over the alternatives: sketch only and
semantic map only. We altered the input processing at the
beginning of our spatial encoding network in SC-StyleGAN.
To ensure the dimensionality consistency and comparison
fairness, we doubled the output channel dimension of the
output module for the case of single input modality to
offset the concatenation of two modalities in our adopted
configuration. Qualitative results are shown in Figure 6 to
demonstrate the difference in results with different inputs
and Table 2 Columns 1–3 shows the results of quantitative
comparisons.

As we can see, with the two input modalities, our
method performs the best in terms of all the metrics, and this
verifies the adoption of the two modalities of input benefits
the generation. However, we can notice that with sketch
only, our framework also provided reasonable performance.
We attribute this to that the sketch itself can provide both
region boundary and structure information, while incorpo-
rating the semantic map further eliminates the ambiguity
when the network interpreting the input sketches.

In Figure 6, we can see that with only semantic map in-
put, the synthesized results present clear region boundaries,
but lack clear internal structures, see the blurry glasses and
plain hair region in the two examples, Figure 6(c). Adding
semantic map effectively eliminate the sketch ambiguity, see
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Fig. 6. Qualitative comparisons of different input schemes. In the first
column, we overlay the two modalities together.

the cloth regions in second row, (b) and (d); With additional
sketch, the boundary present sharp edges (e.g. hair bound-
ary in second row, (c) and (d)). Generally, the models with
inputs of sketch only and sketch-map combination produce
visually similar results, while additional modality of input
provides additional guidance and leads to more detailed
results.

To evaluate the generation ability of our SC-StyleGAN,
we compared our method with several state-of-the-art im-
age generation frameworks including pix2pixHD [6], Deep-
FaceDrawing [10], and pixel2style2pixel (pSp) [8]. We
trained the mentioned methods (except DeepFaceDrawing)
using their released codes, with our generated sketch-image
pairs used in our SC-StyleGANtraining process. For Deep-
FaceDrawing, we directly input the sketches to their online
system to get the resulting images, since DeepFaceDrawing
is designed for generating frontal faces and re-training it
on our training data (involving faces under various poses)
would deteriorate its performance. To conduct a fair com-
parison, we chose our architecture with the sketch input
only. The spatial resolutions in this comparison are: Ours
(512×512 input, 1024×1024 output), pix2pixHD (512×512
for both input and output), pSp (256×256 input, 1024×2014
output), and DeepFaceDrawing (512 × 512 for both input
and output).

For the qualitative comparison, we randomly selected a
collection of 500 portrait images in FFHQ [7] and extracted
the corresponding sketches. Since no available style code is
paired with samples in FFHQ, we adopted the randomly
selected low-level styles in our style code dataset to pro-
vide the coloring and texture details in the synthesized
images for qualitative evaluation. See Figure 7 for the visual
comparison. In this figure, the results of pix2pixHD are
more similar to the ground truth in terms of the sketch
correspondence, while the image quality of pix2pixHD is
inferior to ours. In addition, due to the adoption of the
StyleGAN architecture, our approach can easily change the
low-level coloring scheme of the results and such effects are
not feasible using pix2pixHD.

For a quantitative evaluation, we utilized our test dataset
and performed the image reconstruction task, since we have
the ground truth images paired with style codes. Here
we chose pix2pixHD [6] and pSp [8] as the comparison
methods representing the state-of-the-art pixel-wise image
translation and StyleGAN encoding method, respectively.

Method pix2pixHD pSp pSp-ref Ours
L1 0.121 0.198 0.146 0.105

Local 0.277 0.397 0.284 0.190
Global 0.105 0.191 0.135 0.076

FID 34.021 67.214 52.029 35.116
SSIM 0.448 0.222 0.353 0.453
PSNR 10.070 6.193 7.832 11.029

TABLE 3
Quantitative evaluation on the generation performance among different

methods. pSp-ref represents the pSp generation with reference
low-level style codes.

We evaluated sketches from the test set and used their
paired low-level style codes (if applicable) in generation. We
compared pSp with both the original generation strategy in
their sketch-to-image setting with no style codes as input,
as well as the style-mixed (8-18 as suggested by its authors)
version of the sketch-to-image generation. The reconstruc-
tion results were measured not only by the metrics used
above, but also SSIM [46] and PSNR. The results are listed
in Table 3.

From Table 3 we can see that overall our method
achieves the best performance among all the methods.
Adopting the paired low-level styles significantly improves
the performance of the reconstruction task (see pSp vs. pSp-
ref). The quantitative statistics of both pSp and pSp-ref are
inferior to that of pix2pixHD and ours. This may attribute
to the loose correspondence between the input sketches
and generated results. We can see that in all the evaluation
metrics, pix2pixHD achieves similar performance to ours.
This somewhat confirms the pixel-wise correspondence of
our method. Although pix2pixHD performs well in the
testing data reconstruction task, it fails to presents results
with high quality in the qualitative evaluations, see Figure
7. One possible reason for this phenomena may be that there
exist slight difference between the training data samples and
the test data extracted from FFHQ, considering pix2pixHD
based methods are sensitive to inputs.

5.3 Evaluation of the Editing Performance

To show the effectiveness of the editing mode, we compared
our system with a recent work DeepFaceEditing [25], which
is a state-of-the-art portrait editing technique but focuses on
frontal face editing. Similar to DeepFaceDrawing [10], since
DeepFaceEditing was designed for frontal faces, we did not
re-train their model but used their released code with a
pre-trained model to directly test their editing results. To
conduct a fair comparison, we used the generation model
trained with only sketch inputs. The comparison results are
shown in Figure 8. We can see that due to adoption of the
StyleGAN architecture, our method produces results with
finer details like the skin texture and fewer artifacts (see the
right ear and neck regions of the results by DeepFaceEditing).
For adding head hair and removing facial hair, our method
provides a better response than DeepFaceEditing. For editing
with non-frontal faces or accessories like glasses or hat,
DeepFaceEditing fails to provide high-quality results due to
their component-aware design and frontal face pre-settings.

To demonstrate the full capability of our editing mode,
we illustrate a series of editing operations in Figure 9 with
our full method (model trained with sketch and semantic
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Fig. 7. Generation comparisons with the state-of-the-art methods given the sketches extracted from the FFHQ dataset. We apply the same low-level
features in both pSp-ref and ours.

Fig. 8. Comparisons between DeepFaceEditing (Middle Column) and
our approach (Right Column) (with a sketch only as input) on editing
a front face. Top: before editing. Bottom: after editing, with the edited
regions highlighted. Our approach leads to results with finer details
and provides a better response to the edits (i.e., adding head hair and
removing facial hair in this example). The difference is best viewed with
zoom-in. For a fair comparison, our model is trained with only sketch
inputs.

map inputs). We modified the image with both the sketch
and semantic map to depict the desired modifications. As
mentioned in Section 5.1, our method can produce detailed
results with only a sketch input (e.g., the eyeglasses in first
case of Figure 6(b)). However, such precise sketches (edge
maps) are difficult for ordinary users to draw, even with
the sketching assistance. We utilize the semantic map to
solve this sketch ambiguity (i.e., defining the boundary of
hair and background) by directly providing the semantics

Fig. 9. A series of editing operations on both semantic maps and
sketches (Bottom) and corresponding synthesized results (Top). The
edited areas are highlighted with red boxes in the bottom.

of the region and leave sketch to only depict structural
features, see the hat creation process in Figure 9. Using both
the sketch and the semantic map, drawing for generation
and/or editing is greatly simplified by defining region
boundary (semantic map) and adding structural details
(sketch). Adopting this principle, novice users can produce
high-quality portrait images using our method with great
ease.

5.4 Usability Study

To evaluate the effectiveness and usability of our system,
we conducted a usability study, including two parts: a
fix-task study and an open-ended study. We recruited 12
participants (6 female, aged from 23 to 31, U1-U12) and
asked them to evaluate their drawing skills from 1 (poor)
to 5 (good). 8 out of them were novice or middle users
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Fig. 10. The subjective ratings of the fixed-task and open-ended studies.
The five colors represent the respective scores from 1 to 5. The numbers
in different parts of each column are the numbers of participants giving
specific scores. i to v in (a) refer to ease of use, consistency with
target portrait, precise, effort, and helpfulness, respectively. i to vi in (b)
refer to result diversity, result quality, expectation fitness, helpfulness of
global guidance, helpfulness of local guidance, and helpfulness of the
combination of sketch and map, respectively.

(score: 1-3). Each participant was requested to perform a
fixed-task drawing session as the training process for using
our system, followed by an open-ended drawing session to
let them freely express their design ideas with our system.

5.4.1 Fixed-task Study
In the fixed-task study, we selected two portrait images from
the test set as the target images. To cover different genders,
poses, face components, and expressions, we selected a
smiling female with frontal face and a gazing male with side
face. We asked the participants to reproduce the portrait
images using our system as similar to the target images
as possible. During the study, the two target images were
shown on a display in front of the participants. After they
finished drawing, they were asked to fill in a questionnaire
to evaluate ease of use, consistency with target portrait, precise
control, effort, and helpfulness of guidance in a 5-point Likert
scale (1 = strongly disagree to 5 = strongly agree).

Figure 10(a) plots the distribution of subjective ratings
on the five measures. From the figure, we can conclude
that most participants could produce their satisfied images
similar to the target images easily and with precise control
over the details of the face components. All of them rated the
precise control as 4 or 5 point, validating the good controli-
bility of our system over the whole face. 5 participants rated
the effort as 4 or 5, since they thought they were not very
familiar with the operations and functions of our system.
U6 commented that “it took a while to learn the interface and
the tools”. Most participants (11) considered the suggestive
guidance in our system very helpful in reproducing target
faces.

5.4.2 Open-ended Study
In the open-ended study, we asked the participants to create
their desired face images using our sketch-based suggestive
system. At the end of the study, they were asked to fill
in a questionnaire to evaluate the different features of our
system in a 5-point scale (1: strongly disagree to 5: strongly
agree). Figure 11 shows the representative result images by
different participants with the initial user-drawn strokes as
well as the refined sketches and semantic maps. As seen

in Figure 11, our method can help users turn initial rough
sketches into high-quality photo-realistic portrait images.
Please refer to our supplemental materials for more results.

Figure 10(b) plots the distribution of their ratings. From
the figure, 10 out of 12 participants thought that they could
produce very diversified (rating on 4 and 5) result images
using our system. It resonates with the comments of the
participants: U2 said “[using this system] I can draw various
faces with different characteristics and styles”. 11 participants
rated the result quality and expectation fitness as 4 or 5
point. U12 also pointed out that “the generated face is even
more beautiful than I imagined, with good quality”. All of them
found the global guidance very helpful. U5 said “global
suggestions is very useful because it helps me select a desired
template according to my strokes quickly. It reduces the drawing
time to a large degree”. Local guidance is also preferred by
the participants, as reflected by the high scores in Figure 10
(b) and users’ feedback. U6 commented that “the control over
editing the sketch is really helpful in manipulating the image”.
U12 pointed that “I like the fact that I can change details”.
Besides these points, the participants also said “this tool is
useful for users who have limited drawing experience” (U2 and
U7). The participants also loved the pose selection function:
U2 said “reference in start sketch (pitch/yaw) is super useful”.

To further validate the different roles of sketch and
map modification in our system, we asked the participants
to rate on the effectiveness of sketch and semantic map
modification in structure and region editing, respectively.
We found that the mean scores of sketch for structure
and region editing, semantic map for structure and region
editing are 4.67, 4.50, 4.50, and 4.75 (SD: 0.49, 0.67, 1.00,
and 0.45), respectively. The high scores here indicated the
agreement of the participants on the importance of using
both sketches and semantic maps. It is also interesting to
note that the score of sketch for structure editing is slightly
higher than the score of sketching for region editing; the
score of semantic map for region editing is slightly higher
than the score of semantic map for structure editing. This
indicates that the sketch is more suitable for controlling the
structure (e.g., lines, curves, wrinkles, textures) while the
semantic map is more useful for modifying the region (e.g.,
hair region, background, cloth region). These two features
supplement each other and reduce the ambiguities in the
drawing, thus facilitating the easy and controllable portrait
image creation process.

Besides the advantages of our system, the participants
also provided us with some suggestions for further im-
provement. For example, U12 suggested a rotation function
of the selected component since it is necessary to rotate a
face component especially in side poses. We will incorporate
both rotating and scaling functions of the face component in
the future.

5.5 Perceptive Study

To compare the visual fidelity (i.e., the degree of closeness
to the ground truth) of the reconstructed results with dif-
ferent methods (Table 3), we conducted the first task of
the perceptive study. For the comparison with in-the-wild
sources (samples from FFHQ dataset, Figure 7), since both
our method and pSp provide photo-realistic results, we
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Fig. 11. Representative results from the open-ended study. The left column of each group shows the final sketch and semantic map specified by
the users, and the right image is the corresponding synthesized portrait image by our system. The corresponding initial sketches for retrieval are
illustrated in thumbnails on the upper left corners of synthesized portrait images. The reference style given in thumbnail on the upper right corner
of each synthesized portrait image are chosen by the users.

Fig. 12. Box plots of the fidelity and faithfulness perception votes (aver-
aged over the questions) over the participants for each method.

thus conducted the second task evaluating the generation
faithfulness concerning the sketch inputs.

In Task 1, we prepared a set of reconstructed results
randomly selected from the test results, containing 10 sam-
ples synthesized by all the compared and the ground-
truth images. For each trial, i.e., each group of results, we
asked the participants to select the most similar candidate
to the ground-truth image. For Task 2, we provided an
input sketch and two generated results by our method
and pSp with the same low-level reference style. We asked
the participants to choose the candidates with the best
sketch-correspondence. We used an online questionnaire to
perform this study. 46 participants (30 male, 16 female, 41
in age range 20-30) participated in this study. We counted
the number of votes of each method in all the questions.

Figure 12 plots the statistics of the evaluation results. We
performed single-factor ANOVA tests on the quality and
faithfulness scores, and found significant effects for both
fidelity (F(3,36) = 48.74, p < 0.001) and faithfulness
(F(1,18) = 254.24, p < 0.01).

5.6 Extension to More Categories
Although we focus on face image generation and editing in
this work, our SC-StyleGAN is not limited to faces. In fact,
our conditioning idea can be applied to pre-trained weights
on any datasets. To show this, we extend our modification
to more categories of data in this subsection. While we
mentioned that all experiments are based on the Style-
GAN2 [26] framework pre-trained on the FFHQ dataset,
the modification is framework-irrelevant. This means our
conditioning idea can be applied to pre-trained weights on
any datasets, for both StyleGAN [7] and StyleGAN2 [26].
Here we applied our proposed ideas to the architecture with
weights pre-trained on LSUN Car and Church dataset [11] of
resolution 512×384 and 256×256, respectively. We adopted
a similar data preparation process and collected 5K data
samples for each dataset (4.5K for training and 0.5K for test).
In this experiment, we used the sketch-to-image generation
process and substituted the intermediate feature and image
in the resolution of 32 × 32 for Car and 16 × 16 for Church.
We illustrate the test results in Figure 13. It can be seen that
although the training data are rather limited, the generated
images faithfully respect the input sketches. With different
reference styles, the results present diversified appearance
while respecting the sketch guidance rigidly.

6 CONCLUSION AND DISCUSSIONS

In this paper, we have presented DrawingInStyles, a novel
system to help novice users draw a photo-realistic por-
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Fig. 13. Representative test results. The first row illustrates the sketch inputs, and the second and third rows show the corresponding synthesized
results with randomly selected reference styles. All the results are produced by models trained with sketch inputs only.

Fig. 14. A less successful case. In this example, the generated result
presents a visually inconsistent artifacts due to the densely sketched
input. Delicate accessory like earrings can not be produced.

trait image from scratch or intuitively edit existing portrait
images. Our data-driven suggestive interface interactively
provides recommendations for global template selection
and component detail refinement, and guides users to refine
their drawings towards more realistic faces. To support easy
depiction and precise control of generation results, we adopt
two input modalities: sketches and semantic maps.

Our novel SC-StyleGAN takes as input a sketch and a se-
mantic map and synthesizes a high-resolution, realistic por-
trait image, converting the original StyleGAN framework
to an image-to-image generation architecture. Our method
outperforms the current sketch-to-portrait methods in terms
of both fidelity and condition faithfulness. Using our current
approach, we can strictly encode the spatial conditions
in the StyleGAN generation process while preserving its
generation quality, thus making our architecture possess
superior StyleGAN generation capability and strict spatial
condition correspondence. The user studies confirmed the
usability and effectiveness of our system.

Despite the good results produced by our system, our
method might generate less successful results. Figure 14
shows such an example: Our method responses not well
to delicate accessories, like earrings and necklaces. High-
lighted by red rectangles in Figure 14, although earring
sketch and semantic map are provided, the resulting image
presents no such accessory. This is mainly because the
training samples with delicate accessories are limited and
often contain artifacts in the StyleGAN sampled dataset.

Another artifact shown in Figure 14 is that for the
densely sketched region, the generated result often synthe-
sized it as visually unpleasing textures (highlighted in green

rectangles for input and result), this is quite common in
sketch-based generation methods. In our system, we resort
to the user interaction to resolve this problem, and for
other non-interactive methods, providing a mechanism for
replacing the densely sketched region would be beneficial.

We developed our system based on the idea of providing
users with flexibility to the largest extent, this inevitably
leads to cases when the semantic map and the sketch
conflict with each other sometimes. For well-aligned facial
regions (e.g., eyes, eyebrows, nose, mouth, etc.), the results
correspond to the semantic mask more than the sketch, since
their appearances are primarily dependent on the boundary
shapes. This property was often utilized by the participants
when controlling the mouth/eye open/closed in the draw-
ing session of our study. For the other regions where the
conflict often occurs, e.g., cloth, neck and background, the
generated textures correspond to the sketch more, since such
appearances are mainly defined by the internal textures.
It is also possible that the results would sometimes suffer
from incompatibility of different retrieved components. We
believe that this could be potentially resolved by a post-
processing step, such as small networks to improve the
naturalness of the edited sketch and segmentation map.

Since our method is designed for ensuring the strict spa-
tial correspondence between the condition and synthesized
result, the non-spatial appearance extraction is not sup-
ported by our method. In our editing session, we resorted to
the existing StyleGAN inversion method like pSp to obtain
the low-level appearance for the in-the-wild image editing.
Otherwise, we can only conduct editing on the images
paired with style codes (e.g., the test and training samples),
if the user requires to preserve the original appearance.

Our novel SC-StyleGAN encodes the spatial condition
directly to the pre-trained StyleGAN synthesis procedure
instead of the widely adopted inverting-to-style code ap-
proaches. We provide a new idea of transforming the pre-
trained StyleGAN into a conditional setting, which also
benefits efficient spatial embedding in the StyleGAN-based
applications. Compared to the compact style code, our
encoded feature map preserves more spatial information,
thus providing results with higher spatial faithfulness to the
inputs. Image-to-image translation applications (e.g., face
super-resolution, face inpainting) attempting to utilize the
pre-trained StyleGAN synthesis module could benefit from
our idea. The reference low-level styles could be obtained
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from a separate branch extending from the spatial encoding
module, similar to pSp [8].

One possible direction worth exploring is generating
new sketches and layouts for the sketch refinement pro-
cedure, instead of directly retrieving such examples from
databases. This might provide a richer set of suggestions
with more details. Sketches alone mainly provide the shape
information of target faces. Currently we use reference im-
ages to control the appearance of synthesized results. In the
future, it might be interesting to explore other more direct
approaches to control the local appearance (e.g, via user-
specified color strokes [13]).
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