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realizes robust and stable human joint motion tracking across different device displacements.
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Fig. 1. Our prototype, DisPad, can robustly track human joint orientation despite lateral and circular sensor displacements.
This work uses the elbow to exemplify the function of robust joint tracking of our method.
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1 INTRODUCTION

Human motion tracking has been actively explored not only regarding its great potential for understanding
human intentions [35], but also for actively controlling physical devices and systems [9, 52, 53]. As a new type
of human-computer interaction, human motion tracking could be applied in diverse fields, including robotics,
haptics, bio-mechanical studies, rehabilitation, health care, and entertainment [12, 13]. The human motion
tracking solutions widely used in the film, animation, and gaming industries are based on optical tracking [33]
or inertial sensors [40]. Some studies have also proposed solutions to combine these two types of sensors [1].
These solutions have achieved great success for professional applications but may not be ideal for consumer-
level applications, prioritizing the comfort and convenience of user experience. Soft sensors are emerging as
promising solutions for monitoring human activities [49, 60]. Their advantages in terms of bio-compatibility,
high stretchability, lightweight, and ease of integration within clothing allow long-term monitoring of human
physical status. With soft sensors, motion capture is not easily affected by the aforementioned factors, such
as lighting conditions, integration drift, and occlusions. Thus, there has been a growing demand for applying
soft wearable sensors to the domains of human motion capture, human-computer interfaces, and soft robotics,
amongst others [2].

Soft sensors face critical challenges before fulfilling their potential for wide HCI applications. One of the
challenges is device placement (we refer to them as DisPad position below), which also varies significantly across
different users, motion types, and wearing sessions (Fig. 1). However, existing methods require expert knowledge
to strictly maintain the device location on a subject [39, 40, 55], hampering system robustness and convenience.
In specific scenarios (such as stroke patients with motor impairment), such a requirement of fixed position cannot
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be rigorously applied. For example, patients with motor impairment (e.g., stroke, bone fracture, Parkinson’s)
often fail to fix the assistive device at an accurate position. Thus, the prediction models based on the assumption
of a fixed position of device placement would not be practical in real-use scenarios and may produce serious
measurement errors when such an assumption does not hold.

To address these challenges, we present DisPad for tracking human motion accurately and robustly, even in
the context of considerable variations in device placement. As a proof of concept, we selected the elbow joint
given the popularity of athletes using pads to protect them against injury during a fall or strike. We believe that
with appropriate modification to our device and procedure, our learning-based approach can also be effectively
applied to other joints. DisPad builds upon a standard textile elbow pad and a sparse network of six stretchable
sensors. Our approach removes the strict constraints of accurate device placement on the body, allowing users to
freely wear our prototype in various configurations, just like a regular pad. The flexible on-body configuration
considerably affects the raw sensor readings and presents significant challenges for sensor signal processing
and task-relevant algorithms. Our core contributions lie in a solution that realizes low-cost, robust, and stable
human joint motion tracking across different device displacements. To achieve this, we present a learning-based
algorithm to predict the joint angle in a sagittal plane based on sensor readings and introduce a technique of
transfer learning to further address the variations caused by different users and motion types. Our method offers
users the flexibility of wearing the pad with minimal constraints and ensures our system’s maximal convenience.
In sum, the contributions of our work are three-fold.

o A learning-based method to handle the variation in sensor signals caused by sensor displacement and
to achieve the goal of flexible on-body device placement. We used a long short-term memory (LSTM) to
predict the joint angle, achieving an average error of 9.82 degrees on the testing dataset, where the elbow
pad was placed randomly within a large region on the same user’s arm.

o An unsupervised method based on fuzzy entropy and transfer learning to adapt the model to datasets with
different feature distributions. It achieves an average error of 10.98 degrees across different motion types
and 11.81 degrees across different users.

e A system prototype including sensor signal collection, transmission, angle prediction, and graphical
visualization to predict human arm joint angle. As a prototype embedding the learning-based method, this
system proves the potential of using soft sensors that can be flexibly worn for robust motion-tracking
purposes.

2 RELATED WORK
2.1  Human Motion Capture

Existing methods for human motion capture include vision-based [10, 24, 35] and non-vision-based approaches
[23, 37, 41]. Vision-based methods use RGB, RGB-D, or infrared cameras to capture images and identify human
posture. Benefiting from recent successes of deep learning, vision-based methods have achieved accurate body
tracking under ideal conditions (sufficient lighting and no occlusion). Typical non-vision-based methods attach
sensors, such as IMU [56] or ultrasonic sensors [14], to a human body to measure the orientation and position of
specific body parts [67]. As IMU sensors are low-cost and small in size, IMU-based tracking systems are so far the
state-of-the-art wearable solutions for unconstrained indoor and outdoor environments [56, 58, 64]. To achieve
accurate and stable tracking results, researchers developed algorithms to handle the drift problem caused by
the integration operation [18, 61, 63, 67]. For example, Yizhai et al. used an Extended Kalman Filter (EKF)-based
algorithm to rectify drifts [67]. Existing vision-based and non-vision-based solutions have been widely applied in
a variety of professional and consumer applications. Wearable systems with flexible sensors complement existing
methods and extend the boundary to scenarios where users demand wearing comfort over long sessions and
convenience to use in both indoor and outdoor scenarios.
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Researchers have already explored the use of soft sensors for motion tracking. To date, existing methods have
explored the applications of tracking the motion of the upper body [17], fingers [4, 12, 26, 44], lower limbs [23, 45],
elbow joints [46], and knee joints [59]. In addition to tracking joint angles, a dense array of soft sensors can be
used to measure localized area changes and reconstruct complex skin deformations [25] and tiny stretches of
skin (by pulsing of arteries) [27]. Some researchers have combined soft sensors with inertial sensors to achieve
joint motion tracking [65]. Yirmibesoglu et al. developed a hybrid soft sensor for measuring motion [65], made of
a hyper-elastic silicone elastomer containing embedded micro-channels filled with conductive liquid metal.

The existing studies in this field have mainly focused on the metrics of accuracy and real-time performance
of the sensors for human motion capture. A recent study applied fabric sensors to track joint angles while
considering a small range of sensor displacement (<1 cm) [42]. Since this prior work confirms the effect of sensor
displacement (even within a moderate range) on tracking accuracy, our work presents a thorough investigation
of this open question and explores potential solutions to achieve accurate tracking under conditions of large
sensor displacement.

2.2 Robust Sensor Placement

The problem of sensor displacement indicates that sensors may deviate from their ideal configuration and end up
positioned in a significantly different configuration. This issue often occurs when using wearable systems to
track human states and poses challenges to pre-trained pattern recognition models. Futhermore, this issue is
exacerbated when using flexible sensors, as in our case, due to their deformable property.

One solution is to analyze displacement data and use algorithms to rectify the results. One group of researchers
assumed that the changes in sensor position and sensor feature distribution are consistent with covariant shift
[57]. Based on this assumption, they proposed an improved cross-validation technique called material-weighted
cross-validation, which can be used for model and parameter selection in classification tasks.

Another study combined information from a gyroscope and an accelerometer to distinguish rotation and
translation [39]. The authors proposed a heuristic algorithm to calculate the transformation matrix and classify
human motion. Foster et al. proposed an online self-calibration method to adjust a classifier model dynamically
[21]. Their method shows robust performance under circular displacement within 90 degrees, and our method
extends to both lateral and circular displacement (within 360 degrees). Another study used functional principal
component analysis to compensate for the data changes caused by the positioning changes on the sensor body
[31]. One study maximized expectations and estimated feature distribution in an unsupervised manner, creating a
mechanism for estimating distribution offsets and adjusting the original classifier [8]. The aforementioned works
[8, 21, 31] consistently reveal that the performance degraded as the degree of displacement became larger. Banos
et al. used a hierarchical weighted classifier to search for available features dynamically [5]. Some researchers
tend to search for features that are independent of sensor position. Forster et al. adopted a genetic algorithm to
extract features independent of location shifts for the task of motion type classification [20]. Another solution is
to increase the sensing area [15]. The sensing is more robust in the situation of sensor displacement because of the
enlarged sensing area. To sum up, sensor displacement has been identified as one of the critical factors causing
performance degradation, and existing works have explored a variety of solutions to resolve this issue. Due to
the deformation characteristics of soft sensors, it is more complicated to achieve robust pattern recognition in
the case of placement deviation. Our method aims to tackle the challenges of large circular and lateral device
displacements of an elbow pad and gain robust joint tracking performance.
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3 METHODOLOGY

3.1 Overview

Our work designs and develops a prototype, DisPad, based on a standard flexible pad and a sparse network of
six soft and stretchable sensors (Fig. 2a). Our method aims to estimate the bending angle, 8, of an elbow joint
(Fig. 2b) from the sensor readings of the flexible sensors. Besides, for new users/motions, our method can robustly
predict their moving angles without collecting the optical ground truth. We define the bending angle as the angle
in the sagittal plane between the humerus and the central line between the radius and the ulna (Fig. 2b).
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Fig. 2. (a) The appearance of DisPad, with a red arrow implying the wearing direction. (b) The illustration of the bending
angle of an elbow joint.

We investigate this problem in two different use scenarios. One is for a single user who collected sensor data
and corresponding ground truth with various DisPad positions, and the other is for new motions/users with a
few random DisPad positions (Fig. 3). Note that the ground truth of new motions/users is unknown. For a single

Source Domain . MSE Loss
i e m
Single User Calculate Fuzzy Ranked Optical Estimated Joint Angle
{(With Label) Entropy and Rank Source Domain Ground Truth of Source Domain
LSTM MMD Loss
Target Domain Train LSTM model

New Motion / User Calculate Fuzzy Ranked Estimated Joint Angle
(Without Label) Entropy and Rank Target Domain of Target Domain

Fig. 3. Method overview. Note that we leverage six vertical lines with varying color shading to visualize the magnitude of six
sensor readings’ information entropy.
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user, we first collected the sensor readings under various lateral and circular displacements. At the same time, an
optical motion-capture (MoCap) system recorded the elbow bending angles as ground truth. Then, we trained an
LSTM model by minimizing the MSE loss between the ground truth and the estimated joint angle.

To address the variations across different users and motion types, we design a calibration stage for new users
and new motions. Specifically, we adopt a ranking method based on fuzzy entropy and transfer learning based on
the LSTM model during this stage. First, the fuzzy entropy value of every sensor reading during each displacement
is computed to rank the different sensor readings according to the matrix of the fuzzy entropy at every DisPad
position. Second, the LSTM model undergoes the transfer learning process to mitigate the gap between new
users or motion data and the original training dataset. Namely, the maximum mean discrepancy (MMD) loss is
calculated from the output level (estimated joint angle) of the source domain and the target domain. Besides, the
mean squared error (MSE) loss is calculated in the source domain to ensure the prediction ability of the neural
network.

Alg. 1 shows the pseudo-code of our method. After we built the model based on Dgys;,, we introduced the
technique of unsupervised transfer learning to adapt our trained model to challenging conditions: unknown
device displacement in multi-motion and multi-user scenarios, without the need to capture the ground truth
using a professional MoCap system. This technique allows unsupervised calibration and guarantees the flexibility
of using DisPad in real-world applications.

Algorithm 1: DisPad: Unsupervised Transfer Learning

Input: Dg,sy, the data of a new user Dy, or a new motion Dy, at one DisPad position and

Drrainsource = []
Output: Moving angle of the new user or new motion 6

1 L™ = [I1,17, ..., If] «Indices of six sensor readings of D/ Dnm;

2 Calculate the fuzzy entropy of Dnpm/DnNu;

3 DrrainTarger < Rank Dy, /Dy, from small to large according to the fuzzy entropy matrix; the ranking
index [ = [ 17, ., I"];

4 for every DisPad position of Dg,sm do

5 Ve = [V5, V5, .., V7] «Values of six sensor readings of Dsysp, at this DisPad position;

6 L* = [}, L, ..., ] «Indices of six sensor readings of Dsys, at this DisPad position;

7 Calculate the fuzzy entropy of V*;

8 Vs «Rank V* from small to large according to the fuzzy entropy matrix; the ranking index

Ls=[B, 5, ., ’];

9 if [I7, 7] N[5, 1] # 0 then

10 ‘ z)TrainTarget — z)TrainTazrget-append (Vs)
11 end
12 end

13 Input Drvainsource and DTrainTarget‘ to LSTM;
Train LSTM to compute MSE loss on Drrginsource and MMD loss between the estimated value of
DrrainSource and z)TrainTargetQ

-
N

Given that Dsyprm and Dararm only contain a few DisPad positions, we decided to perform transfer learning
on Dsysm to Dsymm and Dpuam. However, a direct transfer is hard as a user may wear DisPad with any
displacement, making the possible DisPad positions on new users and new motions unknown. Thus, the transfer
learning should handle both sensor displacement and different patterns of new motions/users. To address this
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problem, we employed sensor ranking to make the sensor signal perform consistently in every DisPad position
first and used transfer learning to enable the model to predict Ds,pm and Dpymm with different distributions.
Namely, the calibration process is composed of two steps: 1) rank the sensor readings using the metric of fuzzy
entropy; 2) refine the pre-trained model to an unknown condition of a DisPad position (transfer learning). Table 1
shows datasets in this work.

Table 1. The naming convention of different datasets.

Name Description
The dataset containing data from a single user who performed bending
motions and collected sensor data and corresponding ground truth at
various DisPad positions.
Dsumm (single-user  The dataset including data from the same single user as Dgsypr, Who performs
multi-motion dataset) four different motions at only three DisPad positions.
Dmyumm (multi-user  The dataset containing data from ten users who perform random motions
multi-motion dataset) at only three DisPad positions.
Dnm (new motion
dataset)
Dny (new user
dataset)

Dsusm (single-user
single-motion dataset)

The dataset including data from one motion of Dgy 1, but without labels.

The dataset including data from one user of Dp,arm, but without labels.

3.2 Unsupervised Transfer Learning for Calibration

3.2.1 Sensor Ranking with Fuzzy Entropy. As Fig. 4b and 4d show, the sensors not close to the side of the olecranon
tend to show lower linearity as well as more noise compared with the ones close to the side of the olecranon.
Besides, it can be observed that the linearity of every sensor is different, and sensor readings with lower linearity
are more likely to be accompanied by noise. Furthermore, the mappings between bending angles are more chaotic
and produce one-to-more mappings. Thus, a sensor with lower linearity cannot strongly represent a user’s motion
pattern.

~_Re| [-RL -R2 - R3 R4 - R5 - RY

sh G,

W,‘,‘.
'wmuj g "t
Bttt 1002 S el

L
iy i crmrgm

100 150 100
Angle (degree) Angle (degree)
(@) (b) (©) (d)

Fig. 4. The sensor readings change with different sensor placements. Note that we have normalized all the sensor readings
and separated them by adding different scalars to clarify the figure. (a) A placement where R2 and R3 are on the side chelidon.
Sensor readings correspond to the position (a). (c) A placement where R3 and R4 are on the side of the olecranon. (d) Sensor
readings correspond to the position (c).
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As the lateral and circular displacements cause sensors to change their positions, the sensor near the olecranon
will also be different. As a result, the sensor representing the stronger motion pattern will change when there
are sensor displacements. This change can confuse the network and make the prediction less effective. Thus,
we propose to keep the sensor readings that are strongly representative of the motion pattern and the sensor
data that are weakly representative of the motion pattern always in the same position by ranking operation. In
that way, strongly representative and weakly representative sensor readings are always in the same position.
Therefore, the confusion of the network can be reduced. Since lower linearity and more noise represent the
disorder of the sensor signal (that is, the possibility of the signal repeating its previous pattern is low), we decided
to employ fuzzy entropy [11] to measure the complexity of every sensor reading within at every DisPad position,
and then estimate whether the sensor can strongly represent a user’s motion pattern.

The fuzzy entropy algorithm proposed to analyze surface electromyography (EMG) signals [11] measures the
complexity of time series data. For a finite time series of one sensor reading {x(i) : 1 < i < N} (size N), given the
window size of m, the series can be formed into vector sequences {x:”, i=1,....N-m+ 1}, the fuzzy entropy
can be estimated by the following equations:

Fuzzy En(m,r,N) = In¢™(N,r) — In¢™* (N, r), (1)
. 1 N-m+1 1 N-m+1 "
¢ (N’r)_—N—m+l Z N_mjzl,]#iDij, (2)
N
DI = exp (— (d;j") /r), (3)

where r is the standard deviation of the original time series, and di';‘ is the maximum absolute difference between
x[" and x'7".

By calculating the fuzzy entropy of each sensor, we could rank readings of different sensors according to the
entropy matrix and use it as a new input. For six sensor readings at one DisPad position X = [x1, x3, ..., x6], this
procedure can be represented by:

X =R(X, Fuzzy En(m,r,N)) (4)

where R denotes the ranking operation and Fuzzy En implies the fuzzy entropy matrix of six sensor readings at
the current DisPad position. In that way, while the sensor displacement occurs, it is always possible to allow the
input of the six sensors to be arranged in order of how strong they represent the motion pattern, thus reducing
the effect of sensor displacement. Note that the ranking operation is performed once at one DisPad position.
Besides, to more fairly capture every sensor value change and reduce the impact of noise, we performed max-min
normalization on the data and removed the numeric outliers [51] before entropy calculation.

3.2.2 Refine the Pre-trained Model. We employ transfer learning to generalize the model to other datasets with
different moving patterns.

Training Procedure. We used the same parameter settings for both parameters universally Dsypyrm and Dyrurim-
These parameter settings are shown in the appendix. Then for the above user transferring and motion transferring
cases, we leveraged the same LSTM model structure which is trained on Ds;,sp,.

Loss Definition. Same as [68], we adopted a multi-kernel maximum mean discrepancy (multi-kernel MMD)
[29] including over five different Gaussian kernels to measure the distance between the source domain and
target domain [68]. MMD maps the distributions between the source domain and target domain to a reproducing
kernel Hilbert space, which returns the distance between the two distributions [29, 30]. To better estimate the
distribution discrepancy, we conduct domain adaptation at the low-dimensional output level [68]. As a result, our
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MMD loss can be represented as [29]

H
1 m 2 m,n
e Sy4l00) 5 Sirlora)
— l; Ui 05) — i; ;s J; 5)
1 n
INEN
t Z k(ylsyj)s
i,j=1

where Y; and Y, denote the estimated values of the source domain and target domain, respectively. Ui € Yi(i =
1,2,...,m)and gf € YA}(I =1,2,...,n) are the respective samples oflA/S and f/,. ¥ (Y) denotes the feature embedding
of Y in a reproducing Kernel Hilbert space H and k is the Gaussian kernel function. The Ly is a standard loss
of Dsysm- Lnmd is the loss between the output level’s source domain and target domain. Then, the overall loss is
denoted as:

L=Lnse+n- A" Lnmd, (6)
where 7 is a weighting parameter, and A is a learning rate decaying parameter changing with the iteration of the
neural network, which prioritizes the minimization of Ly, in the early stage of the training [68]:

2
AZW—l (7)
1+e™m
2
Azw—l (8)
1+em/o

where m is a hyperparameter. Due to our small amount of Dg,p1m-7r and Dagypm-1r (In Our experiment is 2000
), our model converges very fast. Thus, in the first five epochs, we adopted Equation 7. Then we used Equation 8
in the following epochs. We have listed the values of m and A in the appendix.

Select Source Data for Training. Thanks to the ranking operation based on entropy, we make the sensor data in
various positions more consistent. That means we do not have to treat all the data from Dg,s,, as the source
domain because the variance of different displacements has been reduced. However, to promote the generalization
ability of the network, once the first two entropy ranking indices of Dgys;,, at the current DisPad position intersect
with that of Dy, /Dnm, we will take that data out of Dg,s;, and use them as the source domain.

4 IMPLEMENTATION
4.1 System Prototype

Composition of the DisPad. We have augmented a standard fabric elbow pad with six soft stretchable sensors,
wires and a circuit board. The six soft sensors are evenly distributed in a circular pattern around the elbow. The
direction of the arm and the sleeve are parallel. These fabric sensors [43] are capacitive, produced by ElasTech!with
a fixed width of 2.5 cm. The sensor can be directly bought from the online store Taobao?, or by contacting the
sales on the ElasTech website for a retail price of 80 USD per item. The product manual indicates that the sensor
can be hand-washed over 100 times and machine-washed over 60 times. In order to fix the sensors to the fabric
and the wires, we added a layer of thermoplastic polyurethane (TPU) adhesive film between the fabric/wires and
the sensor, which was then hot pressed by a flat-bed press. The wires were connected to the circuit board by
welding.

Uhttp://www.elas-tech.com/
2https://item.taobao.com/item.htm?id=644248735672
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Physical details of DisPad. The length of the elbow pad is 20 cm, and the medium width of the elbow pad is 12
cm. The upper and lower ends are 14.8 cm and 11.8 cm, respectively. The length and width of the sensor are 16.5
cm and 2.5 cm, respectively, and the space between every sensor in the middle of the elbow pad is 1.8 cm. Our
dimension design was driven by three rules: (1) The elbow pad can be worn by most subjects we found. Thus, we
customized the elbow pad for a modestly-sized user who is P6. (2) The sensor length should be able to cover the
elbow joints under our flexible placements to measure the motion effectively. (3) Since the arm girth of the upper
arm is generally bigger than the lower arm [48], the elbow pad width should also be different from the two ends.
(4) The sensors are fixed evenly on the elbow pad.

Details of soft sensors. The soft sensor comprises five layers, from bottom to top are the matrix, the elastic
bonding layer, the first conductive layer, the elastic dielectric layer and the second conductive layer [43]. The
matrix is made of an elastic textile material composed of spandex. The elastic bonding layer is the TPU. The
first and second conducting layers are composed of GaInSn (a liquid metal) and TPU mixed slurry. The elastic
dielectric layer consists of three sub-layers, including guta gum, the dilatant fluid and the thermoplastic elastomer.
The dilatant fluid is the starch solution which is composed of corn starch and water. The mass ratio of corn starch
to water is (1.5 - 2) : 1. For more information about the fabrication and performance of sensors, please refer to the
recent work [43].

Design initiatives of materials. We chose the capacitive sensor as its good linearity was suitable for tracking
human motion (Fig. 5b), although in real scenarios the signals are always corrupted (as shown in Fig. 5¢). We
selected nitrile ammonia as the fabric because of its excellent elasticity (it can fit more closely to the skin and
stretch with human movement.). We selected Teflon as the wires because it was flexible and could have more
contact surfaces with the electrode layer, enhancing the contact and stability of the conductive connection.

40 Extgnson 8004
Flexion
[2]
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Fig. 5. (a) A placement where R2 is on the side of the olecranon of the elbow. (b) The theoretical curve between sensor
readings and their extension. (c) The sensor readings correspond to position (a) during the flexion and extension of the elbow.

Design initiatives of layout. Our adopted sensors can detect human movements in a parallel direction from their
stretched length. However, unlike researchers aiming at tracking the change of the whole human skin surface in
multiple directions [25], we only pay attention to human motion in a sagittal plane. Thus, we only placed sensors
parallel to joint motion. A further experiment in the result section discusses the intuition and justification of the
number of sensors when building the prototype.
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Fig. 6. Visualized human joint motion with a computer monitor (left) and a mobile phone (right).

The sensor readings are wirelessly transmitted via Bluetooth Low Energy at a frame rate of 50Hz. The
capacitance value is converted to a digital form within [0, 1023]. The circuit board is designed by the sensor
vendor ElasTech and sends digitalized sensor signals to a mobile phone (Huawei Mate 20, memory: 6GB, Android
version: 9) through Bluetooth. The data are then further transmitted to a remote server, which conducts the
training or loading process of the LSTM model. The circuit can send data directly to a desktop with a Bluetooth
dongle. The server is configured with a one-core CPU without GPU support and a memory capacity of 2 GB. The
operating system is 64-bit Ubuntu 16.04. The tracking result can be visualized either on a PC or mobile phone (as
shown in Fig. 6). The visualization application is developed using Unity3D.

4.2 Dataset Preparation
The dataset preparation procedure can be divided into three stages:

(1) a single subject conducts elbow bending with different device placements. The collected dataset Dsysm,
serves for training and testing the learning model in the standard case;

(2) a single subject conducts four motion types (run, walk, jump, clap) to validate our method across different
motion types. The collected dataset is named Dg,pim;

(3) a group of participants is recruited to validate our method through a multi-subject experiment, with the
collected dataset named Dpryuprimm-

The whole procedure was approved by the Medical Ethics Committee of Xiamen University. Before the data
collection, we obtained the participants’ written consent after informing them of the experiment’s purpose and
procedure.

4.2.1 Single-user Single-motion Dataset Ds,sn, Preparation.

Participant. We invited a participant (Male, Age: 31) to prepare the training dataset. The participant (denoted
as P1 in the following text) is an engineer at the authors’ institution. Since we planned to explore the effect
of arm girth on sensors’ tracking results, we measured the arm girth of the users’ upper and lower arms 8.25
cm from the chelidon as this region is covered by soft sensors in the non-displaced position. This method was
leveraged at both the left and right hand and the other subjects. Note that we only measured the arm wearing
the DisPad. The participant’s arm girth was 24.75 centimeters. We conducted a pilot test to evaluate the pad’s
wearing experience and the sensors’ extension (to keep the elbow pad close to the arm such that the sensor
could extend effectively). The result shows that the expected arm girth is 20.5 to 28 centimeters. This ensures a
comfortable wearing experience during the process of data collection.
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Fig. 7. (a) Our subject in a motion tracking studio. (b) DisPad with reflective markers. (c) The markers are captured by the
tracking software. (d) The process of collecting training data. Here, we define the displacement of our pad along the lateral
and circular dimensions as n and S, respectively.

Procedure. The participant P1 entered a motion tracking studio wearing the pad (Fig. 7a). The pad was aug-
mented with reflective markers that were tracked by the infrared cameras (Fig. 7b). The 3D positions of the
markers were tracked and computed by the MARS 2H motion-capture system at a rate of 60 FPS (Fig. 7c) produced
by NOKOV?. The 3D tracking error from the motion-capture system was +15 mm, and we estimated the rotational
tracking error as [68], obtaining the maximal error as 0.88 degrees. From the tracked positions in Fig. 7c, we can
calculate the vector between the centerline of the upper arm and the lower arm, and the angle between these two
vectors is the rotation of the elbow joint. We synchronized the collected signals from the sensors and the joint
angles recorded by the motion-capture system by triggering the two software programs concurrently. Given the
different frame rates of these two signal sources, we down-sampled the joint values to ensure the consistency of
the sample size. These routines were applied to the following data preparation procedures throughout the paper.

During the collection of single-subject single-motion dataset Dsysn, the participant’s action sequence was
designed as Fig. 7d. The range of the circular displacement was f§ €[0°, 360°], which indicates that we consider
various flexibility of allowing users to rotate the pad largely unrestricted. We defined the chelidon as our starting
position though the starting position can be any point in the circle around the junction of the upper and lower
arms. The range of the lateral displacement was defined as 1 €[min, Nmax], Where nmax=-Nmin=4 cm. For each
trial, the participant conducted Np=8 bending cycles. For each bending cycle, the participant bent the elbow
within the range of rotation (approximately 6 €[40°, 180°]) at different velocities. After each bending trial, we
shifted the pad by a slight lateral displacement Ay=1 cm until it reached 7,,4,. After an entire cycle of lateral
displacement, the pad rotated by Af = 5°, and the previous procedures were repeated. The collection took around
1.2 hours in total.

Shttps://www.nokov.com/
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4.2.2  Single-user Multi-motion Dataset Dsypm Preparation.

Participant. The same participant is involved in the procedure of Single-Subject Single-Motion dataset prepara-
tion.

Procedure. During the collection of the motion dataset Ds;,pm, the participant was instructed to perform four
daily activities: walking, running, clapping hands, and jumping. Since people perform the selected activities
frequently in their daily activities, the data collection procedure requires no further pre-training. They can be
used as a reference for our prototype application in daily routines. Besides, these motions exhibit a range of
magnitude, resulting in different rotation speeds and ranges of the elbow joint. Thus, it is beneficial to observe
the effect of our method under different situations. Within each trial, each type of activity lasted for one hundred
seconds. We conducted the trial three times after shifting the pad by a random circular and lateral displacement
during each time. The displacement configuration was within the range (8 €[0°, 360°],  €[Nmin Nmax])- The
whole collection process lasted 22 minutes.

4.2.3  Multi-user Multi-motion Dataset D ypypmm Preparation.

Participants. We invited ten subjects to participate, including five males P4, P8 — 11 and five females P2, P3, P5 — 7.
Their ages ranged from 21 to 55, and their arm girths were between 20.5 centimeters and 28 centimeters. They
were all graduate students in the authors’ institution.

Procedure. To construct the dataset Dpy,nm, each participant followed the procedure of collecting Dsynim
except that they collected data at each random displacement for 40 seconds, respectively. The arrangement of
markers was the same as Fig. 7b and Fig. 7c. The collection process lasted 21 minutes in total. After the collection,
we did an interview to figure out the wearing experience.

4.3 Network and Training Details

4.3.1  Network Model. We considered the problem of estimating the angle of an elbow joint as a regression
problem. To address this problem, we constructed a six-layer LSTM model [32] to match the sensor readings
and optical ground truth. The network input was 30 frames of sensor readings (size 30x6), and the output was
the elbow joint angle (size 1x1). The batch size was 256, and the hidden units were 256. The learning rate was
0.01 and reduced by 10% every two epochs. To avoid gradient explosion and gradient extinction, we adopted the
gradient clip. A batch normalization layer was added to unify the data distribution for each layer. In the output
layer, a fully connected layer transformed the output of the LSTM layer to the estimated elbow joint angle. To
make the output smoother, we adopt an error-state Kalman filter. The ratio of predicted error to measure error
was 2.67.

4.3.2  Loss Definition for Angle Prediction. The MSE loss was calculated between the sensor readings and optical
ground truth of Dgysm.

4.3.3 Data Statistics & Partition. The final Ds,5m, Dsurim, and Daumm datasets contain 219,932, 60,276, and
60,972 samples, respectively. The datasets and the code will be released to the public after the publication of this
paper. Since we observed an excessive number of samples in the circular displacement range of f=[160, 180] in
the original training dataset, we discussed the impact in Section 5.1.

Training for Single User. When parting the Ds,s,, dataset, the DisPad positions were randomly divided into
three partitions (training, validating, testing) so that the samples in the three partitions are independent of each
other.

Source Domain for Transfer Learning. This selection can refer to Dryginsource in Alg. 1.
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Target Domain for Transfer Learning. Since we meant to transfer the model to new motions (or users) with a
simple acquisition effort, we only adopted 2000 samples of one DisPad position of target motion (or user) for
training and validated the result on the remaining DisPad positions. Note that the labels of all training sets were
removed.

This partition ensures that the trained model does not over-fit in the training partition and can be generalized
to new DisPad positions in the testing dataset.

Table 2 lists the dataset statistics and their partition into training, validation, and testing. The value in each
cell indicates the number of DisPad positions in each condition. In the following discussions, we use the suffix
(=TR, -V A, —TE) to indicate the partition (e.g., Dsusm-1r denotes the training subset of single-subject single-
motion dataset Dy sm).

Table 2. Statistics and partition of datasets, in terms of DisPad positions.

Training Validating Testing Total

Dsusm 378 126 135 639
Z)SuMm 4 4 4 12
Dmumm 10 10 10 30

5 RESULT
5.1 Tracking Results on Single-subject Single-motion Dataset Dg,s,

501 L 125%-75% 50+ ] 25%~75%
T 15QR T 15QR
0 — Median — Median
40 Mean value| 40 Mean valug|
0 =
30+ $ 2.
g B
a a
5 201 5 20
i i 10]
101 10
0_
O- T T T T T T T T T T T T T T T T T T T T T
4 3 2 -1 0 1 2 3 4 30 60 90 120 150 180 210 240 270 300 330 360
Lateral displacement (cm) Circular displacement (Degree)
() (b)

Fig. 8. (a) The average tracking errors over individual lateral displacements 7. (b) The average tracking errors over individual
circular displacements S.

The tracking errors with respect to the lateral displacements and the circular displacements are illustrated in
Fig. 8a and Fig. 8b, which imply that the lateral and circular displacements have no apparent effect on the tracking
errors. During the training stage, we optimized the learning-based model on the Dg,s,,-v4 and computed an
average of tracking errors on the Ds,sm-1E. After 98 seconds of training, the final average tracking error of
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estimating the bending angle of the elbow joint in Dg,sm-1E Was 9.82 degrees. This verifies that our method can
be applied to various lateral and circular displacements, indicating the robustness of our algorithm.
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Fig. 9. (a) The relationship between the number of data points and bending angles. (b) The tracking errors of the method
under different bending angles. (c) The relationship between the number of data points and different moving velocities. (d)
The tracking errors of the method under different moving velocities.

We evaluated our results on the testing dataset based on the joint bending angles and moving speed. The
impacts of the joint bending angles and moving speed are depicted in Fig. 9b and Fig. 9d, respectively, while the
number of data points for different joint bending angles is illustrated in Fig. 9a. Fig. 9a shows the data points of
the joint bending angle are mainly concentrated in the ranges [160, 180]. In contrast, there are fewer data points
around 30 degrees. From Fig. 9b, we find that the maximum and minimum tracking errors are located around the
angle values of 30 and 160 degrees, respectively. The minimal errors might be attributed to a large number of data
points around 160 while the maximum errors may be due to a small number of data points in the range [30,50].
The correlation value between the number of samples and the average errors at a specific joint angle is -0.60.
This implies that they are moderately negatively correlated, i.e., increasing the number of samples could result in
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a tendency to reduce the tracking error. As a consequence, the number of samples at a particular joint angle in
the dataset may have an effect on the error. Fig. 9d depicts the relationship between the velocity and the average
tracking errors. The velocity was calculated by the sum of the angle variation divided by the time spent with
a time window of 30 ms. In addition, we conducted a correlation analysis to figure out if there is a correlation
between moving velocity and average tracking errors. The result was 0.78, which implies that there is a highly
positive correlation between the moving velocity and the tracking errors. To explore the reason, Fig. 9c shows
the relationship between the number of data points and moving velocity. We can infer from this figure that an
excessive number of data points around 0 degrees/ms creates a low average tracking error. On the contrary, the
number of data points decreases dramatically while the moving velocity exceeds 0.5 degrees/ms and reaches the
minimal value at 0.8 degrees/ms. This trend reverses Fig. 9d, which peaks at 0.8. The correlation analysis shows
that the tracking errors and the number of data points are moderately related (the result is -0.46). Hence, the
errors are also correlated to the number of data points.

5.2 Tracking Results on Single-subject Multi-motion Dataset Dsym
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Fig. 10. (a) Representative images of the process of building the motion dataset Dgs,p1m- (b) The average tracking errors of
different motion types in the motion dataset Dgypr, and the effect before and after transfer learning.

Representative images of the process of capturing scenes of different motion types are illustrated in Fig. 10a.
The placement of markers on the elbow is the same as that shown in Fig. 7b. The relationship between different
motion types and the average tracking errors is depicted in Fig. 10b. We also compared the tracking errors with or
without transfer learning. It can be easily seen that without transfer learning, the tracking errors of clapping are
the highest on average, followed by jumping, then running and walking. Their average tracking errors surpass
fifteen degrees. Besides, the difference between the upper limit and the lower limit exceeds 40 degrees.

In contrast, as shown in Fig. 10b, the difference between the four motion types is smaller with transfer learning.
In addition, the average tracking error and the difference between the upper limit and the lower limit also
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decrease. The upper limit is now below 40 degrees while the average tracking is around 10 degrees. To further
measure the effect of the transfer learning, we ran the Mann-Whitney U test (given that the data do not follow a
normal distribution (p<0.05)) to check if the difference of the tracking errors before and after transfer learning
is statistically significant. The result (U=1534615168, p<0.001) indicates the significant difference between the
errors before and after transfer learning. It proves that transfer learning is suitable for the prediction of different
motion types and reduces the tracking errors of different motion types. We also verified the average tracking
error on the dataset Dg, a1, which is 10.98 degrees.
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Fig. 11. (a) A plot of the detailed predict results on Dg, 1. (b) A plot of the detailed prediction errors in on Dgyam.

Fig. 11a and 11b show our predicted result compared to the ground truth and baseline (without ranking entropy
and transfer learning) on Dgyppm. It can be observed that there are different motion patterns in Fig. 11a and the
samples of each motion were similar. Although the baseline prediction results have a roughly similar shape to the
ground truth, the baseline prediction is not as accurate as our method in moving ranges (Fig. 11b). This difference
means that the data distribution of Dgypm is not similar to that of Ds,sm owing to sensor displacements and
new motion patterns. Compared to the baseline, our model generalizes better on those different patterns.
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Fig. 12. The tracking errors and the arm girths and BMI values of each participant.

5.3 Tracking Results on Multi-subject Multi-motion Dataset Dygprm

Since we built the training dataset Dg, s, based on the participant P1, we tested the performance on the multi-
subject multi-motion dataset Dy, mm to measure the generalization ability of DisPad to users. As shown in
Fig. 12, the tracking errors without transfer learning are obviously different among the ten users. However, the
tracking errors and the range of errors reduce significantly after the transfer learning is applied. We ran the
Mann-Whitney U test (given that the data donot follow the normal distribution (p value<0.05)), confirming a
significant difference between the errors before and after transfer learning (U=1383015500.00, p<0.001).

With transfer learning, the average tracking error on the dataset Dy, nm was 11.81 degrees. This shows the
robustness across different users. To explore a possible relationship between the users’ arm girth values and the
tracking errors, we measured the average arm girths (the average value of the upper and lower arm girths) of
the corresponding users. The data are also shown in Fig. 12. The correlation between the users’ arm girths and
the average tracking error with transfer learning was 0.11, indicating a weakly positive correlation. This is not
surprising because P1’s arm girth was 24.75 cm, which was smaller than most of the other users’ arm girths. Thus,
smaller arm girth leads to better prediction results in this case. However, we observed that the tracking error
of P12 violated the weakly positive correlation between user’s arm girth and tracking results. Although P12’s
arm girth was the largest among all subjects, his tracking error was smaller than many subjects with smaller
arm girths. After checking subjects’ profiles, we found that the body mass index (BMI) value of P12 was 28.2,
which was the largest among all subjects (see Fig. 12), representing a high probability of being overweight [62].
Thus, P12 was likely to have less muscle mass, and the stretching effect on the sensor might be equivalent to that
of a subject (like P8, whose BMI value was 22.62) with a smaller arm size but a higher muscle mass. To further
investigate the impact BMI value has on tracking results, we computed the correlation value between the BMI
values and the average tracking errors, which was -0.72, implying a strong negative correlation.
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Fig. 13. (a) A plot of the detailed predict results on Dpgyprm- (b) A plot of the detailed prediction errors on Dagypim-

Fig. 13a and 13b illustrate the predicted results on Dp,arm,. Compared to Fig. 11a, the moving range and
duration of the motion are more complex due to the random motions every user performed in a short time.
Attributed to the above reasons, the baseline failed to predict accurate moving ranges, causing bigger errors than
ours (Fig. 13b). On the contrary, our model outperformed the baseline and generalized well on Dy nm.

5.4 User Feedback on Wearing Experience

During the interview after capturing the dataset Dpppm, most of the users mentioned that it was comfortable
to wear DisPad and it would not impede them from doing movements. However, P11 acknowledged that the
wearing experience was not bad but it was inconvenient for moving because of the increasing pressure of the
DisPad. He also said that it could be improved by making a DisPad of a bigger size. P3 also supported this view:
“It will be better if the size can change with some technologies to fit more people with different arm girths”

To validate the tracking effect in new users, we invited nine users (denoted as P12 to P20), whose arm girths
are between 20.5 cm and 28 cm, for evaluation and also for video shooting. The procedure was like this: First,
they put on the elbow pad for calibration (the calibration included collecting 2,000 samples of data for ranking
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and training the transferring model). Generally, the calibration process only lasted for 2.7 minutes (including the
2,000-sample data-collecting process). Note that every user calibrated only once, and then they could wear the
DisPad in various displacements without further calibration. After the calibration, those users were allowed to
bend their arms while watching the visual effects. Lastly, we did a video shoot to present the tracking effects.
Also, the whole procedure was reviewed and approved by the Medical Ethics Committee of Xiamen University.
Before the interview and video shoot, we obtained each participant’s written consent after informing them of the
experiment’s purpose and procedure.

After the experiment, we interviewed the participants to investigate the wearing experience, whether the
elbow affected the user’s motion, and whether the visualized result was accurate. During the interview, all the
users mentioned that the elbow pad was comfortable and it did not affect the movement.

“The wearing experience is comfortable. It is moderate and not squeezed. I was able to move normally during
the wearing. ” (P12)

“There is no inconvenience when wearing. The material is not thick, which is also acceptable during summer”
(P9)

Meanwhile, most of the users felt the tracking effect was accurate except P16, who pointed out there was slight
shaking sometimes.

“Overall, the visualization effect is consistent with my movement. However, there is slight shaking in the
visualization sometimes.”

5.5 Comparison of Different Learning Methods

We also compare our method with the sequential model and non-sequential model on the dataset Ds,s,, without
transfer learning. These methods include LSTM (with an extra batch normalization layer), LightGBM, The mix of
CNN, LSTM (denoted as CL following) and Fully-connected neural network (FCN). LSTM decreases the probability
of gradient explosion and gradient disappearance. The mix of CNN and LSTM is a popular model handling human
motion data [54]. LightGBM is determined as a powerful model which reduces the training time while keeping a
good predicting ability [36]. Fully-connected neural network (FCN) is a classical model in deep learning. Random
forest [6] is an ensemble learning algorithm based on the decision tree. The comparison results are depicted in
Table 3. They are both popular approaches in the domain of machine learning. It can be observed that the average
tracking error and the variances of our method, CL, LightGBM, FCN and random forest were different from each
other. While the LightGBM took less training time, our method outperformed the other methods in average
tracking error and the variance of the tracking errors while consuming only 98s to train. Since the other methods
were not far ahead in training time, the mean tracking error did not exceed ours, we chose LSTM as our method.

Table 3. Comparisons of our method with alternative learning methods.

Method Our Method CL LightGBM  FCN  Random Forest
Training time 98s 422.6s 1.2s 47s 378s
Run time 0.001ms 0.00000lms  0.019ms  0.001ms 0.316ms
Error on Dsusm-TE 9.82 11.40 15.91 11.39 17.40
Error on Dsysm-va 9.96 12.17 16.04 12.61 18.66
Variance on Dsysm-TE 93.93 161.50 137.31 121.28 315.58
Variance on D, sm—v A 100.58 184.71 158.19 134.72 332.63

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 5. Publication date: March 2023.



DisPad: Flexible On-Body Displacement of Fabric Sensors for Robust Joint-Motion Tracking « 5:21

5.6 Tracking Results with Different Numbers of Sensors

The sensing capability of our prototype is rooted in the sensor stretching caused by the joint bending angle. Fig. 4
shows the sensor readings at different locations, indicating that the joint bending angle leads to a significant
change in sensor readings of 2-3 sensors. These sensors locate at the semi-circle region on the side of the olecranon,
and this region is effectively stretched when the joint rotates. In contrast, the sensors on the side of the chelidon
are not stretched and exhibit unnoticeable reading changes. Our method should effectively cover the stretching
semi-circle region given a full range of the circular displacement and up to 4 cm of the lateral displacement.
Therefore, the number of sensors is expected to be 3-6.

We also numerically compared the results using different numbers of sensors (Fig. 14a). The reported error was
an average over all the combinations of sensor choices. For example, when choosing five sensors for prediction,
we randomly left out one sensor, rebuilt the prediction model, and repeated this process six times. From these
findings, we can conclude that the accuracy increases along with the number of sensors. However, the growth
rate is lower when the number of sensors is four or five, implying that there is no significant change in accuracy
at this level. As a result, using three sensors is enough to predict joint angles with relatively high accuracy.
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Fig. 14. (a) The average tracking errors change with the number of sensors. (b) The entropy value changes with unidirectional
circular displacement. Note that we have normalized sensor readings at every displacement, computed entropy value and
added results of six sensors.

5.7 Recommended Layout Under Flexible Sparse Placement

Since our prototype was required to undertake large sensor displacements, sensors at various displacements
should reflect the user’s motion pattern. For the circular displacement, we investigated the entropy value change
with unidirectional circular displacement. As shown in Fig. 14b, the entropy value changes significantly when the
circular displacement is less than 60 degrees and starts to fluctuate when the circular displacement exceeds 60
degrees (meaning that the motion patterns beyond 60 degrees are too weak to change the entropy value). Thus,
the sensors are able to track human motion patterns when the displacements are within 60 degrees. Given that
the sensor may produce both forward and backward circular displacements, the effective monitoring area of one
soft sensor is 120 degrees. Therefore, three sensors are sufficient to support our robust tracking algorithm when
they are evenly distributed. However, suppose the user wishes to use non-uniform placement for their reasons.
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In that case, more than three sensors are needed, and the effective monitoring area of the sensors should cover
its all circular displacement range. (2) For the lateral displacement, since we expected the sensor to cover both
the user’s upper and lower arms to monitor bending angles, centering the sensor in the lateral direction would
ensure that the sensor could span across both the upper and lower arms. Our sensor length is 16.5 cm, and the
lateral displacement verified in our experiment is +/- 5 cm, which is close to half of the sensor length.

5.8 Comparison of Different Ranking Methods

To figure out the best strategy to re-arrange the data, we conducted an experiment with the ranking criterion
of standard deviation, fuzzy entropy, jitter (indicating a lack of smoothness and naturalness, which is the third
derivative of the position [19]), and not ranking. We tested them with the datasets of Ds,sm, Dyumm and Ds,pvim,
respectively. From Table 4, we can infer that fuzzy entropy outperformed the other methods on all the datasets

Table 4. Comparisons with alternative arrangement methods.

no ranking Jitter SD Fuzzy Entropy
(degree)  (10*degree/s®) (degree) (degree)
DsuSm-TE 9.82 11.56 12.22 10.66
Dousm—va 9.96 12.48 13.86 11.92
DsuMm-TE 18.82 14.51 12.93 10.98
DsuMm-vA 16.59 15.84 11.25 10.27
DMuMm-TE 27.96 28.48 18.95 11.81
DMuMm-vA 29.34 25.17 16.06 12.53
Using time 0s 6.1%e-5s 5.5%e-5s 0.022s

except the Ds,sm—7 While the computing of fuzzy entropy consumes the most time. That means when one user
has collected his/her own dataset, there is no need to adopt fuzzy entropy to displace the features. However,
when the user wants to do other movements or there is a new user, it is necessary to adopt fuzzy entropy to
adjust the features.

5.9 Latency Performance

The total delay was about 40 ms, which can be divided into four parts. The first part was the sampling interval of
the circuit board, which transmitted data every 20 ms. The second part was the process of the forward pass of the
LSTM model estimating the joint angle, which caused a delay of 0.001 ms. The third part was the Kalman filter,
which cost 0.05 ms.The fourth part was the network delay. Since the server and the mobile Bluetooth transmitter
were connected via a TCP network, the delay depended on the quality of the network signal. In our experiment
(conducted using a local wireless area network), the delays at the server-mobile and server-computer stages were
2 ms and 17 ms, respectively.

5.10  Summary & Discussions

In conclusion, our method performed robustly over Ds,sm, Dsumm and Dyuamm with low latency. Besides, the
sensors can also be reduced to three with low accuracy loss. Although the current elbow pad is limited to users
whose arm girths are between 20.5 cm and 28 cm, it can be resolved by developing elbow pads with different sizes.
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In addition, the wearing experience is good across different users and the device will not affect user movement
whose arm girths are between 20.5 cm and 28 cm. During the user evaluation interview, all the users also
acknowledged the comfort of the DisPad. Besides, they thought the DisPad was accurate because the DisPad kept
up with their movements throughout the experience. However, as for the problem of jitters, there may be two
possible reasons: (1) The elbow pad will produce some wrinkles during the data collecting process and real-time
tracking, which induces the noise; (2) The model only fits the approximate functional relationship between sensor
values and ground truth. As a result, there will be tracking errors during real-time use. These two problems are
interesting, and solving them is meaningful for improving the effect of real-time tracking tools in future work.

6 DISCUSSION
6.1 Limitations of Our Work

In this work, we proposed a learning-based method to tackle sensor displacement. Then, we validated it to
multi-motions and multi-users. However, we found there was something that should be improved.

First, only detecting one DOF (degree of freedom) angle is not enough. While we assume that the elbow joint is
a hinge constraint, i.e., it can only flex and extend around one axis; the actual elbow joint is far more complex than
a single degree of freedom (DOF). The observation is that the radius rotates around the ulna (Fig. 2b), allowing
for forearm rotation. Thus, to resolve this issue, detecting multiple joints is helpful to get sufficient information
about the relevant joints, which is essential to analyze the complex signal patterns caused by these previously
neglected DOFs. Second, when an existing user wants to perform a new type of motion, or there is a new user, we
need to collect extra sensor data to do the transfer learning. However, compared to IMUs, which need calibration
for every use, our method requires collecting such data only once.

6.2 Comparison with Other Fabric-Based Tracking Methods

We discuss the difference between our technique and several state-of-the-art fabric-based tracking systems
[16, 38, 42]. One study used a long short-term memory deep neural network to relate the sensor signal to
full-body posture [38]. They reported a tracking error between 1.2 to 5.7 centimeters in terms of the Euclidean
distance between the estimated and baseline joint positions. Their analysis was limited to three types of motion:
squat, bend & reach, and windmill. Another study investigated motion tracking for the torso and shoulder and
achieved an average error of 9.4 degrees [16]. While these two works achieve impressive tracking performance,
they lack sufficient analysis of the sensitivity of the error to the factor of sensor displacement. The recent study
[42], which is the most relevant to our work, achieved an average tracking error of 9.69 degrees on the elbow
joint. They further investigated tracking performance when the sensor deviated from the ideal location by 1 cm,
which caused the average tracking errors to increase by around 10 degrees (i.e., the errors went up to around
20 degrees.) In comparison, we achieved 10.98 degrees across different motion types and 11.81 degrees across
different users with transfer learning, given various configurations of sensor placements whose displacement is
well beyond 1 cm. This confirms the robustness of our method in tackling the issue of sensor displacement.

7 CONCLUSION

We have presented DisPad, which uses a sparse network of soft sensors on a textile pad to robustly estimate the
elbow joint angle regardless of the variation in on-body device placement, different motions and different users.
To deal with the sensor displacement, we leveraged an LSTM model to estimate the elbow joint angle. Besides,
transfer learning was adopted to handle the different motion types and users. To reduce the number of variables
during transfer learning, we adopted the ranking based on fuzzy entropy. Then, we conducted comprehensive
experiments to evaluate tracking errors across different users, motion states, and motion types and achieved
an average tracking error of 9.82 degrees on the single-user fixed-motion dataset. We further achieved stable
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tracking errors of 10.98 degrees and 11.81 degrees across different motion types and users, respectively, with the
diverse on-body placement of our device prototype.

This work opens up a few directions for our future efforts. The first one is to alleviate the demand for manual
data collection. We might resort to recent deep learning techniques (such as generative adversarial networks
[28]), which can be used to generate data for training. The second direction is to extend our method to estimate
full-body posture rather than just one elbow joint. Currently, our prototype can be applied to other joints such as
knee joints and wrist joints, with the layout adjustment according to the joints’ girths. It is common for athletes
to wear both elbow and knee pads for protection, creating an ideal application scenario for our system. Using four
joint angles (two elbows and two knees) will be potentially sufficient to predict the angle of limb joints. Besides,
our prototype also can be leveraged to track neck and spine joints if we change the wearing ways. For instance,
the prototype can be customized into a bandage (for neck and spine joints) or neck pillow [47] (only for the neck
joint). However, our robust layout does not have to be applied to joints like fingers, shoulders, upper legs and
ankles because researchers usually develop clothes, gloves and stockings to capture those joints’ movements and
those prototypes have advantages in fixing the hardware at a specific position [3, 7, 12, 22, 34, 45, 50, 66]. Thus,
there is no need to adopt our robust layout. The third research direction is to develop an application for patients
who have impaired motor functions. Patients who have undergone fractures, paralytic strokes, or suffer from
cerebral palsy face a lengthy period of rehabilitation, during which in-house self-training is key to their recovery
progress. Our method only requires wearing the device at an approximate location, and no expert knowledge is
necessary, thus providing high convenience for users in need.
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A IMPLEMENTATION DETAILS

e Our method: Except for some small-range-limited hyperparameters, we started with a rough search and
then fine-tuned those hyperparameters as follows: we varied the number of LSTM layers from [3, 4,5, 6, 7],
the number of units for the LSTM layer from [64, 128, 256, 512], the batch size from [128, 256,512, 1024], n
of Equation 6 from [3000000, 4000000, 5000000, 6000000, 7000000], the m of Equation 7 from 4.69 X 10e — 4
[9.1 X 10e7,1 X 10e%,1.01 x 10€3,1.02 x 10€%], the values of the r of Equation 1, the learning rate from
[le — 1,1e — 2, 1e — 3, 1e — 4], and the ratio of predict error and measure error of the error-state Kalman
filter from [1.33,2,2.67,3.33,4]. For the value of r and m that have limited range, we varied r from
[0.1,0.15,0.2,0.25] and m from [2, 3] At last, we set the 1 of Equation 6 as 5000000, the m of Equation 7
and lambda of Equation 8 to 1010000000, the r and m of Equation 1 to 0.25 and 2, respectively. Besides, we
compared the result of transferring in the feature layer or output layer.

o CL: This network consists of three sub-modules: (1) an embedding layer consisting of four 1-dimensional
convolution filters to learn embedding (the number of hidden units was set to 64); (2) an encoder consisting
of one long short-term memory (LSTM) layer (the number of LSTM units was set to 256); and (3) an
attention module consisting of a self-attention layer. The learning rate was 0.01. The hyperparameters and
network structure were optimally chosen.

o LightGBM: The setting of parameters can refer to Table 5. The hyperparameters and network structure
were optimally chosen.

o FCN: This model contains four hidden layers, using a varying number of [128, 256,512, 256] nodes in each
layer. The learning rate was set to 0.01. The hyperparameters and network structure were optimally chosen.

e Random Forest: We set hyperparameters as follows: max depth to 3, n estimators to 150 and min samples
split to 3. The hyperparameters and network structure were optimally chosen.

Table 5. Patameters of LightGBM.

Setting Value
num leaves 100

max bin 76
max depth 19

boosting type gbdt
reg alpha 0.0001
reg lambda 0.0001

min data in leaf 5
learning rate 0.09
feature fraction 0.7
bagging fraction | 0.7
num trees 60
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