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Fig. 1. We propose a two-stage approach for noise-resilient 3D reconstruction of large-scale indoor scenes through panoramic scanning. Left: We use a
Turtlebot3 assembled with three unsynchronized commodity RGB-D sensors to perform multiple in-place rotations at different scanning positions. Middle:
The first stage constructs 360◦ 3D panoramas (color, depth, and depth uncertainty) from unsynchronized RGB-D streams. Right: The second stage registers
and stitches multiple panoramas into a globally consistent point cloud taking the pixel-wise uncertainty into account.

We present a two-stage approach to first constructing 3D panoramas and
then stitching them for noise-resilient reconstruction of large-scale indoor
scenes. Our approach requires multiple unsynchronized RGB-D cameras,
mounted on a robot platform which can perform in-place rotations at differ-
ent locations in a scene. Such cameras rotate on a common (but unknown)
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axis, which provides a novel perspective for coping with unsynchronized
cameras, without requiring sufficient overlap of their Field-of-View (FoV).
Based on this key observation, we propose novel algorithms to track these
cameras simultaneously. Furthermore, during the integration of raw frames
onto an equirectangular panorama, we derive uncertainty estimates from
multiple measurements assigned to the same pixels. This enables us to appro-
priately model the sensing noise and consider its influence, so as to achieve
better noise resilience, and improve the geometric quality of each panorama
and the accuracy of global inter-panorama registration. We evaluate and
demonstrate the performance of our proposed method for enhancing the
geometric quality of scene reconstruction from both real-world and synthetic
scans.

CCS Concepts: •Computingmethodologies→Reconstruction;Vision
for robotics; Point-based models.
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botics.
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1 INTRODUCTION
Modern scene understanding and navigation tasks [Qi et al. 2017;
Zhang et al. 2015] require databases of high-fidelity 3D scenes [Ar-
meni et al. 2016; Dai et al. 2017a; Hua et al. 2016], which are mostly
acquired through either hand-held scanning [Dai et al. 2017a; Hua
et al. 2016] or panoramic scanning [Armeni et al. 2016; Ikehata et al.
2015; Mattausch et al. 2014]. Hand-held scanning techniques take
RGB-D video streams as input and utilize modern dense reconstruc-
tion systems [Dai et al. 2017b; Newcombe et al. 2011] or visual-SLAM
algorithms [Mur-Artal and Tardós 2017] for tracking and integrating
sequential frames. Panoramic scanning, on the other hand, schedules
the scanning process into multiple in-place rotations to construct 3D
panoramas for progressive integration at different viewpoints [Wi-
jmans and Furukawa 2017]. Compared with hand-held scanning,
which requires continuous focus on regions with sufficient geomet-
ric or photometric features for robust tracking, panoramic scanning,
where in-place rotations are easier to be tracked [Chang et al. 2017;
Taylor et al. 2015], becomes a practical alternative for industrial or
commercial applications [Armeni et al. 2016; Ikehata et al. 2015],
even for upcoming automated scanning scenarios with the aid of a
progressive discrete motion planning module.
A variety of techniques have been developed to construct 360◦

panoramas using such a panoramic scanning scheme, and based on
their input and output image types (i.e., whether containing depth
information or not) we categorize them into three classes, namely
2D-to-2D, 2D-to-3D and 3D-to-3D. Although it is possible to use
2D RGB cameras to recover coarse depth information for canonical
stitching and VR/AR applications [Hedman et al. 2017; Hedman
and Kopf 2018], the resulting depth quality is usually not sufficient
for high-fidelity 3D reconstruction. Current 3D-to-3D techniques
based on a single RGB-D camera [Taylor et al. 2015] have limited
Field-of-View (FoV) when the Degree-of-Freedom (DoF) of sensor
motion is restricted (e.g., with 1-DoF rotation), and hence cannot
cover most of entire spherical panoramas. This narrow FoV problem
can be addressed by utilizing multiple RGB-D cameras (e.g. arranged
vertically for horizontal rotation), which, however, introduces new
issues with camera calibration and synchronization.
The first issue of panoramic scanning with multiple cameras is

how to recover the relative poses of these RGB-D frames. A con-
venient method is to use external positioning sensors, as used by
Matterport [Chang et al. 2017], to directly measure their poses. How-
ever, under the circumstances when no external positioning sensors
are available (or it is hard to perform precise calibration for cus-
tomized assembly), an alternative choice to technically solve this
problem is to rely on visual features for tracking. If shutter syn-
chronization is accessible, this issue can be relegated to a general
visual SLAM or reconstruction problem [Dai et al. 2017b; Mur-Artal
and Tardós 2017] by pre-stitching synchronized frames with camera
extrinsics. Unfortunately, most commodity depth sensors (including
Kinect and PrimeSense) do not support shutter synchronization, and
forcibly grouping them by timestamps will cause misalignments

(Fig. 6) due to neglected motions during shutter intervals. In addi-
tion, although some approaches for unsynchronized RGB cameras
have proposed to utilize overlapped scanned areas as mutual infor-
mation [Cadena et al. 2016], following their strategies to enlarge
these areas to track multiple RGB-D cameras would easily cause
severe depth interference and reduced FoV. Therefore, when neither
external auxiliary hardware nor sufficiently overlapped areas are
available, we need a new strategy for jointly solving poses. Other-
wise, the resulting frames toward featureless areas (e.g., ceiling and
ground) would eventually cause tracking loss [Yang et al. 2019].

The second issue is the inherent sensor noise, which is not severe
when using high-quality laser scanners such as Faro 3D [Ikehata
et al. 2015; Wijmans and Furukawa 2017] but becomes critical on
commodity RGB-D frames [Cao et al. 2018]. Previous works handle
noise during frame integration for continuous scanning through sev-
eral general data structures, such as the Truncated Signed Distance
Function (TSDF) volume [Dai et al. 2017b; Newcombe et al. 2011],
the Probabilistic Signed Distance Function (PSDF) volume [Dong
et al. 2018], and Surfels [Keller et al. 2013; Weise et al. 2009; Whelan
et al. 2015b]. But only a few of them have further considered the
influence of noise during frame registration [Cao et al. 2018; Dong
et al. 2018]. Also, using the above data structures for constructing
panoramas is both memory inefficient and computationally expen-
sive. In addition, modeling the noise of depth measurements after
panorama construction is important, since the subsequent steps
for the inter-panorama registration and final integration are all af-
fected by such uncertain measurements. Hence, how to represent
scanned data and model their noise through an efficient and suitably
organized structure is also an important task during the panorama
construction process.
To address these issues and thus reconstruct high-fidelity 360◦

panoramas and 3D scenes represented by a point cloud, we present a
novel approach suitable for tracking unsynchronized RGB-D cameras
during panorama construction, with the noise of depth measure-
ments modeled and further handled.

For the first issue, our strategy to achieve collaborative scanning
is based on the consensus of motion of these cameras driven by an
in-place rotator (e.g., a robot). Considering the coaxiality of their
motion enables us to jointly derive their states without depending
on synchronization or significant landmark co-occurrences. This is
achieved through several novel regularization constraints under a
factor graph optimization framework [Grisetti et al. 2010].

For the second issue, we choose the equirectangular image format
for fusing color and depth measurements rather than those general
data structures, so as to efficiently organize and estimate per-pixel
uncertainty in the panorama domain (Fig. 1-Middle). With such
an organized image structure and its noise models, we optimize
the geometric quality of the reconstructed panorama regarding the
data consistency in such an image domain, and further consider
the influence of noise quantitatively during the subsequent inter-
panorama registration and final integration (Fig. 1-Right).

In summary, our work makes three contributions. Firstly, we de-
velop a feasible workflow that progressively reconstructs 3D panora-
mas and scenes, achieving higher accuracy than state-of-the-art re-
construction algorithms Secondly, we propose a solution for jointly
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tracking unsynchronized cameras by formulating their motion con-
sistency, without relying on significant visual co-occurrences and
shutter synchronization. Thirdly, our approach infers pixel-wise
depth measurement uncertainties in the equirectangular image do-
main, and further considers these uncertainties during subsequent
operations, to enhance the geometric quality of panoramas and the
final scene.

We assembled our prototype system (Fig. 1-Left) inspired by the
pioneering Matterport [Chang et al. 2017; Matterport Inc. 2019]
system. The only preparation for performing the proposed recon-
struction is an initial calibration between cameras, while the relative
transformations between frames and the rotation axis are automat-
ically computed during scanning. To evaluate the effectiveness of
the proposed approach quantitatively, we additionally perform ex-
periments on several simulated scans from synthetic scenes.

2 RELATED WORK
We next briefly review approaches designed for the two stages of
panoramic scanning: panorama construction (Sec. 2.1) and panorama
integration (Sec. 2.2).

2.1 Panorama Construction
The key problem of image stitching for 2D-to-2D panorama con-
struction, i.e., aligning and integrating multiple RGB frames, has
been well-studied in the vision communities [Szeliski 2006]. Ho-
mography [Zaragoza et al. 2013] and deghosting approaches [Zhu
et al. 2018] are two common and complementary solutions, with
the same goal to reduce artifacts. Such 2D-to-2D methods can be
directly extended to consider depth measurements as an additional
channel, but they would cause misalignment when the parallax ex-
ists, since the used homography is essentially for mapping the same
planar surface between images.

Hence, recent 2D-to-3D algorithms tend to predict depth informa-
tion from input images and utilize a 6-DoF relative transformation
rather than the homography for stitching. On condition of sufficient
visual correspondences, recent approaches [Klingner et al. 2013;
Schönberger et al. 2016] use Structure-from-Motion (SfM) [Snavely
et al. 2006] for predicting relative camera poses. Based on these
estimated poses, Multi-View Stereo (MVS) approaches such as plane
sweeping [Häne et al. 2014] and their variants [Hedman et al. 2017;
Hedman and Kopf 2018; Im et al. 2016] are performed to densify
depth predictions on the images. Among them, Hedman et al. [2017]
augment the near envelope for discouraging nearby depth hypothe-
ses and achieve state-of-the-art depth quality sufficient for VR/AR
panoramic applications, but such predicted depth information is
still not precise enough for our purpose.

Aiming at high-fidelity dense reconstruction, various algorithms
proposed for RGB-D frames mainly concentrate on precisely track-
ing sensors and refining depth measurements [Choi et al. 2015; Dai
et al. 2017b; Whelan et al. 2015b; Zhou et al. 2013]. Specifically for
3D-to-3D panoramic scanning, Taylor et al. [2015] attempted to
perform panoramic reconstruction through a single RGB-D sensor.
Compared to their setup and approach, our scheme has two impor-
tant advantages: (1) Our algorithm takes the input from multiple
cameras and jointly optimizes their trajectories to achieve globally

consistent stitching. (2) The reprojection parameters for stitching
frames onto the reconstructed panorama are simultaneously solved
with the poses of involved frames to predict the exact location of the
rotation axis, while their method relies on the Manhattan assump-
tion to use axis-aligned lines and surfaces in a scene for addressing
the gravity orientation after these poses are determined. However,
in practice, the gravity orientation does not precisely coincide with
the direction of the rotation axis (see also Sec. 6.2 for a quantitative
comparison).

Our scanning style remains the same as Matterport [Chang et al.
2017; Matterport Inc. 2019], a commercial system which uses exter-
nal sensors for localizing their scanned frames. But technically, our
system is extricated from the reliance on auxiliary devices by im-
plementing visual-based localization for unsynchronized cameras,
i.e., achieving the same goal with fewer hardware requirements.
Furthermore as demonstrated in our experiments (Secs. 6.2-6.3), the
constructed pixel-wise depth uncertainty models as an augmented
channel of the panorama can enhance the quality of the panorama
construction.

2.2 Aligning and Integrating Panoramas
Due to the discretization of scanning positions in such a panoramic
scheme, constructed panoramas need to be jointly aligned for com-
positing final scenes. In geometric processing, this is referred to as
model registration and typically accomplished through a coarse-to-
fine procedure. In the coarse stage, sparse transformation between
models can be acquired manually by user hints [Ikehata et al. 2015;
Mura et al. 2014], or automatically through 2D/3D keypoint match-
ing [Chang et al. 2017]. In the fine stage, direct methods based on
photometric [Whelan et al. 2015a] or geometric [Besl and McKay
1992; Ren et al. 2019; Segal et al. 2009] costs are proposed to establish
and optimize dense correspondences between two models. Typically
for integrating 360◦ 3D panoramas, Taylor et al. [2015] propose to
use projective association through equirectangular projection for
efficient correspondence searching, andWijmans et al. [2017] utilize
an additional floor plan image to accomplish globally consistent
alignment for high-quality laser scans. However, for low-cost depth
sensors, dealing with sensor noise is critical or even necessary for
obtaining high-quality reconstruction. From this perspective, our
method also differs from Taylor et al. [2015] in the use of our ob-
tained noise models, which support noise-aware inter-panorama
registration as well as the final integration, thus effectively improv-
ing the accuracy of reconstructed scenes.

3 ASSUMPTIONS AND OVERVIEW
Our method is based on a scanning platform carrying multiple
unsynchronized RGB-D cameras. Before scanning, we mount an
additional fish-eye camera to perform a joint calibration [Maye et al.
2013] on all color and depth sensors to obtain their intrinsic and
extrinsic parameters. Then we use CLAMS [Teichman et al. 2013] to
undistort raw depth measurements. During scanning, the platform
is required to perform in-place rotations at multiple viewpoints.
Specifically for wheeled robots, this can be implemented by setting
the same speed in different directions for its two drive wheels. For
each RGB-D sensor we use the calibrated extrinsic parameters to
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map its depth frames to their corresponding color frames, and thus
the input to our algorithm is a set of timestamped RGB-D images
clustered by different scanning positions.

Our reconstruction algorithm is based on the following two pre-
requisites: (1) The rotation of all cameras should be performed
coaxially with a static axis, which requires a flat ground according
to our assembly (rugged scenes can be adapted with an additional
pan for performing stable rotation). (2) The rotation should also be
performed smoothly, which means the angular acceleration should
remain low during scanning. Although the coaxiality and smooth-
ness pre-requisites may not be perfectly satisfied due to the unpre-
dictable robot shaking, our method is tolerant to these practical
phenomena with configurable parameters.
The reconstruction process is performed in two stages, namely

panorama construction (Sec. 4), which stitches in-place RGB-D streams
to individual 360◦ panoramas containing color, depth, and an ad-
ditional per pixel depth uncertainty (Fig. 1-Middle), and panorama
integration (Sec. 5), which registers and integrates these panoramas
to form a complete 3D representation of the scene (Fig. 1-Right).
Each stage contains two phases: namely, pose estimation and

data fusion. In the pose estimation phase (Sec. 4.1) of the first stage,
our algorithm performs bundle adjustment with additional regular-
izations considering motion consistency to solve for the poses of
frames and the rotation axis. Then in its data fusion phase (Sec. 4.2),
we warp raw color and depth measurements into an equirectangu-
lar representation of a desired panorama for statistical modeling of
sensor noise, and perform an optimization to refine its geometric
quality. In the second stage, the pose estimation phase is accom-
plished by consistently aligning spatially related panoramas through
geometric correspondences to account for their mixed uncertainty,
combining both the original surface distribution uncertainty and
our extracted measurement uncertainty (Sec. 5.1). Finally, in its data
fusion phase, based on such mixed uncertainty knowledge, the esti-
mated poses of these aligned panoramas, as well as their uncertain
depth measurements, are used to revise the final dense point cloud
as a representation for the whole scene (Sec. 5.2).

4 PANORAMA CONSTRUCTION

4.1 Consistency Regularization for Panoramic Scanning
We address the challenge of jointly solving for the poses of frames
and the rotation axis, by utilizing the characteristics of these coaxial
rotations. Since all cameras and the axis constitute a fixed body and
move together during scanning, we can thus use a unified physical
model and extrinsics to describe their motion. Especially for such
an in-place rotation, once these extrinsics between the axis and
multiple cameras are solved, the status of these cameras can be
parameterized through only 1-DoF, as the azimuth angle of the
rotator. As shown in Fig. 2-Left, the edges between the rotation axis
and these cameras enable the regularization of camera motions (as
illustrated in the bottom-right circle in gray), where the azimuth
is regarded as their point of reference. This enables us to solve for
motions of unsynchronized cameras jointly without the requirement
of sufficient landmark co-observations [Schmuck and Chli 2017].

In order to formulate this feature, we choose to use a factor graph
framework [Grisetti et al. 2010] due to its flexibility of tackling

multivariate optimization with various types of constraints. The un-
derlying factor graph, denoted asG = (X,F , E), consists of variable
nodes X to be solved under the constraints of factors F via corre-
spondences E. We introduce four categories of variables, including:
(1) The classical landmark yj ∈ X as defined in various visual SLAM
approaches (e.g.,Mur-Artal and Tardós [2017]), where yj ∈ R3 rep-
resents the global position of landmark j; (2) The augmented pose
representation for frame i from camera c: xci = {Tci ,αci } ∈ X,
containing a traditional 6-DoF pose representation Tci ∈ SE3 and
the proposed azimuth as αci ∈ [0, 2π ), where Tci denotes the pose
of the frame i from the camera c w.r.t. the reference frame (without
loss of generality we choose the first received frame in our system
as the reference frame, and its pose remains fixed during the op-
timization); (3) The installation bias between the sensors and the
rotation axis Tu ∈ X, where Tu ∈ SE3 is denoted as the pose of the
rotation pole w.r.t. the reference frame; (4) The extrinsics between
other cameras and the reference camera (the one that outputs the
reference frame) Tc ∈ X, where Tc ∈ SE3 stands for the 6-DoF
pose of camera c in the coordinate system of the reference cam-
era. For the above rigid transformations, we use Euler angles to
represent 3D rotations to facilitate the configuration of parameters
w.r.t. imperfect robot motions. Compared with conventional factor
graph formulations for visual SLAM tasks [Mur-Artal and Tardós
2017], our proposed graph structure contains additional variables
such as camera extrinsics (Category 4) and azimuth variables (Cat-
egory 2) for online calibration and regularization, respectively. In
fact, the variable for the pose of the rotation axis Tu constitutes
the model-view transformation during the panorama construction
phase (Sec. 4.2). Acquiring a correct transform for reprojecting mea-
surements onto the panorama enables us to balance the contribution
of each raw frame, i.e., they can generate consistent regions on the
panorama image for calculating statistics.
Based on these variables, three types of factors are established

(see Fig. 2-Right), as: (1) traditional landmark observation factors
establishing the relations between frame poses and landmarks for
bundle adjustment; (2) pose regularization factors regularizing cam-
era motions to conform to horizontal rotations; (3) smoothness fac-
tors constraining consistent angular velocity between consecutive
frames.

Landmark observation factors. Like previous works [Mur-
Artal and Tardós 2017], our factor graph utilizes keypoint correspon-
dences as our baseline of bundle adjustment, where the observation
factor fob,Vci, j ∈ F ob for its corresponding frame xci and landmark
yj is defined as:

fob,Vci, j ∝ exp(−
1
2
∥pVj − Kc (T−1ci · yj )∥

2
ΩVci

), (1)

where ∥e∥2Ω ≜ e⊤Ω−1e is the squared Mahalanobis distance with
the covariance matrix Ω. pVj = dj [uj ,vj , 1]⊤ is the observation of
yj in the image coordinate V of xci , and Kc (·) is the perspective
projection function w.r.t. the intrinsic parameters of camera c .
We use the noise-aware bundle adjustment proposed by Cao et

al. [2018] to deal with the uncertainty of raw depth measurements,
where ΩVci = diag(σ 2

u ,σ
2
v ,σ

2
d ) is the covariance matrix capturing

the confidence of independent measurements, with (σ 2
u ,σ

2
v ) given
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Fig. 2. Schematic of linkages and factors involved in our pose estimation
problem. Left: The rotation (whose axis is illustrated as a cylinder) driven
by the rotator is conducted through their static links. The left link in black
stands for the transformation from the axis to the reference camera (Tu ),
and the other links in brown represent the extrinsics (Tc ) for each RGB-D
camera c . Right: Our underlying factor graph consists of three types of
factors linking different variables. Bottom-Right: Through the conduction
of sensor motions, additional factors can be established regarding their
reference azimuth.

through the uncertainty from a keypoint extraction approach [Mur-
Artal and Tardós 2017], and σ 2

d assigned via the estimated variance
from the depth model proposed by Handa et al. [2014].
Correspondences between frames and landmarks are built by

extracting and comparing ORB features [Mur-Artal and Tardós
2017]. We utilize RANSAC [Fischler and Bolles 1981] to sample and
reach a consensus on confident 3D transformations for rejecting
erroneous visual correspondences between frames from the same
camera. Temporally distant frames are also examined for detecting
and addressing loop closures through Randomized Ferns [Glocker
et al. 2015].

In addition, correspondence search is carried out between differ-
ent cameras through the temporally closest frames if there exist
overlapping regions between these frames. As an example in our
configuration, these overlapping regions are rather narrow (less
than 2% of the whole image domain to alleviate depth interference),
but sufficient for refining camera extrinsics online. For example
in our assembly, hundreds of frames and landmarks are used for
solving the extrinsics Tc for two cameras.

Pose regularization factors. To make use of the consistency of
motion and estimate the pose of the rotation axis, we introduce a
regularization factor fr eдci ∈ F r eд for each frame xci as follows:

fr eдci ∝ exp(−
1
2
∥T−1ci · Tu · R(αci ) · T−1u · Tc ∥2Ωr eд ), (2)

where R(αci ) ∈ SO3 is a pure azimuth rotation generated through
αci for representing the state of rotation, and ∆T ≜ Tu ·R(αci ) ·T−1u
reflects the expected pose state of the reference camera w.r.t. the
reference frame according to the azimuth αci . Hence, the difference
between the expectation of frame xci (which can be described as
∆T · Tc ) and the estimation Tci describes the severity of systematic
shaking, and we use Ωr eд ∈ R6×6 as a configurable parameter for

uniformly describing and considering such severity for all frames,
whose translation and rotation parts are set according to the possible
level of vibration determined by the hardware setup (see Sec. 6.1
for details). Such a redundancy for describing the expected and
the actual poses, i.e., between variables αci and Tci , makes our
algorithm tolerate imperfect rotations. When estimating the cost
of such a factor, we linearize the overall transformation into a six-
dimensional vector [Kümmerle et al. 2011].

Velocity smoothness factors. To promote uniformity of angu-
lar velocity, we establish smoothness factors fveli ∈ Fvel between
adjacent frames as follows:

fveli ∝ exp(−
1
2
∥vi,i+1 −vi−1,i ∥

2
Ωvel

), (3)

where vi, j = (αi ⊖ α j )/(ti − tj ) is the angular velocity between two
consecutive frames based on their azimuths αi ,α j and timestamps
ti , tj , with ⊖ denoting the wrap around subtraction with a modulo
of 2π . Ωvel ∈ R again defines the confidence of such factors, whose
values are assigned according to the stability of motion control (see
Sec. 6.1). Since we define the angular velocity vi, j regardless of
which camera it belongs to, we effectively avoid the requirement of
hardware synchronization.

Optimization with robust kernels. Although landmark obser-
vations are filtered before being added into the factor graph, there
may still exist erroneous correspondences. Hence, we additionally
apply the Huber robust kernels [Latif et al. 2013] to all landmark
observation factors, and define the overall optimization problem as:

min
X

∑
Fvel

E(fveli ) +
∑
Fr eд

E(fr eдci ) +
∑
Fob

H
(
E(fob,Vci, j )

)
, (4)

where E(·) = − log(·) obtains the negative log-likelihood of these
factor constraints in Equations 1-3, making their scale factors be-
come irrelevant constants.H(·) is the Huber cost function [Latif et al.
2013] for diminishing influences on incompatible pose observations.
In general, as discussed previously, our proposed structure of

factor graph can be applied to similar panoramic scanning devices
containing one or multiple cameras with smooth rotations. Detailed
hardware and parameter configurations, and extensive experiments
are given in Secs. 6.1 and 6.2, respectively.

4.2 Constructing Panoramas and Noise Models
Processing in the panorama domain instead of using general data
structures [Keller et al. 2013; Newcombe et al. 2011] can produce an
organized image rather than a point cloud or a mesh, which is more
conducive to the statistics and optimization of raw depth measure-
ments. Since each raw frame to be integrated only has a small par-
allax to the constructed panorama, nearly all regions of raw images
can be warped into the panorama with little occlusions, and thus
such a panorama is able to convey most of the valid measurements.
In particular, there are several candidate structures for constructing
a panorama, such as a cube map, a stereographic projection image,
and an equirectangular image. Among them, the equirectangular
image is the best way to evenly reproject raw RGB-D pixels to the
target domain, and maintain their neighboring relationship. Hence,
it becomes a common choice in both previous methods [Hedman
et al. 2017; Hedman and Kopf 2018] and ours.
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Fig. 3 shows the visual difference between using the TSDF vol-
ume, surfels and the equirectangular image for fusing color measure-
ments, where both TSDF volume and surfels take much more mem-
ory (on average, 4 GB for TSDF volume with voxel hashing [Nießner
et al. 2013] and 1.8 GB for surfels, respectively), but result in poor
quality after ray-casting. As a comparison, the chosen equirectan-
gular image format simply needs 1 GB to store those reprojected
depth measurements for statistics.

Fig. 3. Comparisons of generated color panoramas using TSDF volumes (the
first row for each example), surfels (the second row), and equirectangular
images (the third row) with local views on the right. Both TSDF volumes
and surfels in this figure use 10-meter cut off but still result in incomplete
regions, while the equirectangular projection can correctly project the color
information to the panorama domain when given correct relative poses.

In the combination step, we firstly warp every RGB-D frame
onto the panorama by constructing an organized 3D mesh through
adjacent valid depth pixels for reprojection, where equirectangular
projection Ke (·) is used and T−1u · Tci is assigned as the model-
view matrix for each frame i from camera c . Adjacent pixels with
their depth difference exceeding a threshold λa = 0.15 m are not
connected to avoid generating tiny grids with excessive stretches.

After that, we obtain a 4-channel measurement set for each pixel
to conclude the final result, and specifically for the ‘depth’ channel,

we replace the definition of depth by the radial distance between the
obstacle and viewpoint, since there is no focal plane under equirect-
angular projection. The most straightforward strategy is averaging,
which is applied to the color channels in our implementation. For
the more critical depth channel, some 2D-to-3D approaches use
MRF [Hedman et al. 2017] for deciding the most suitable values
from those multi-view stereo algorithms. However, in the 3D-to-3D
case, noise is essentially due to imprecise measurements rather than
erroneous visual correspondences. Hence, numerical approaches
are feasible for computing, instead of choosing distance values, from
these valid measurements.

Our proposed numerical approach is inspired by Zach et al. [2007],
who proposed to combine the data fidelity considering all valid mea-
surements with an additional Total Variation (TV) term for maintain-
ing the smoothness between adjacent pixels. In detail, we adjust the
final radial distance zi of each pixel Pi represented in the spherical
coordinates S as PSi = [ϕi ,θi , zi ]

⊤ (for azimuth, inclination, and
radius, respectively) on the panorama O to minimize the following
energy function:

argmin
z

∑
Pi ∈O

( ∑
P′
j ∈Ii

|zi − z′j | + λb · ∇zi
)
, (5)

where the first term is a data fidelity term, and P ′
j is one of the

reprojected raw measurements of Pi , with the set containing all
measurements of Pi denoted as Ii . The latter term is a smoothness
term: considering that a majority of indoor scene surfaces are flat
as an available feature [Furukawa et al. 2009], this term should
correctly formulate this feature for the panoramic image domain.
We test three types of candidate formulations of ∇zi as discussed
below, with their balancing parameter λb further explained with
experiments in Sec. 6.2.
As the first choice, ∇zi can be defined similarly as the original

form of TV [Rudin et al. 1992; Zach et al. 2007], but such a form based
on image gradient would cause spherical surface artifacts due to
the changed definition of ‘depth’ measurements for equirectangular
images. A modification to diminish the flaw is to convert these
spherical coordinates S into cylindrical coordinates with the cylinder
radius ρi = zi · sinθi , and use ∇ρ instead of ∇z to formulate the
TV term, but this form is still not appropriate and may result in
cylindrical surfaces.
To better exploit the planarity feature, we attempt to formulate

it in the Cartesian coordinates A with the other two choices for
the smoothness term. The second choice is derived from Oswald
et al. [2012], which minimizes the total surface area constructed by
adjacent pixels in the 3D Cartesian space, as follows:

∇zi = ∥∆PA,−ϕ × ∆PA,−θ ∥, (6)

where ∆PA,−x =
−−−−−−−→
PAx−1P

A
x ,x ∈ {ϕ,θ } is the vector formed by ad-

jacent pixels Px and Px−1 along two image dimensions ϕ and θ .
This term encourages flat regions in the Cartesian coordinates and
penalizes uneven surfaces.
The third choice is to measure its total planarity through the

normal consistency along two image dimensions, as:

∇zi = ∥∆PA,−ϕ × ∆PA,+ϕ ∥2 + ∥∆PA,−θ × ∆PA,+θ ∥2, (7)
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where ∆PA,+x =
−−−−−−−→
PAx PAx+1,x ∈ {ϕ,θ }. We add these squared norms

to avoid singularities during iterations when three adjacent pixels
are co-linear. This term favors smooth rather than sharp surfaces
through two orthogonal surface derivatives.

0.00 0.10 0.20

0.00 0.05 0.10

Fig. 4. Comparisons of the geometric quality between different methods,
for both the depth value (Top) w.r.t. the ground truth and the uncertainty
of depth (Bottom). For the depth comparison (Top): Left: Equirectangular
image domain with the total surface area smoothness term (Equation 6).
Right: Equirectangular image domain with averaging. For the pixel-wise
uncertainty after optimization (Bottom): Left: Ray-casted image from the
TSDF volume. Right: Ray-casted image from the surfels. See Table 3 for
quantitative differences between three choices of the smoothness term.

Fig. 4 shows the difference of geometric quality between different
data fusion strategies. With the TSDF representation, distant pixels
due to a larger uncertainty have higher possibility to erroneously
influence their related voxels, and hence are colorized in purple. The
surfel representation is able to form dense and normal-consistent
surfels for nearby surfaces but the surfels become sparse with their
normals disarranged in far regions. Averaging on the equirectan-
gular image outperforms these two data structures for panoramic
scanning, and the optimization considering smoothness further en-
hances the geometric quality of the generated depth maps. Since
the performances of the three smoothness terms are close according
to our experiments, we refer readers to our evaluation (Table 3) for
detailed quantitative comparisons, which shows that the second
choice, i.e., the total surface area, slightly outperforms other choices
among tested sequences.

Finally, the variance σ 2
z of the radial distance of such a pixel Pi is

estimated through comparing all its observations P ′
j ∈ Ii w.r.t. the

solved radial distance, which is then regarded as the uncertainty
along the viewing direction of this pixel during subsequent process-
ing in Sec. 5. On the uncertainty map, we observe that contours as

well as distant objects often have higher variance. This phenomenon
conforms to the lack of edge sharpness in depth maps and the noise
model of raw depth measurements [Handa et al. 2014; Teichman
et al. 2013].

5 PANORAMA INTEGRATION

5.1 Noise-aware Alignment between Panoramas
For a fine registration between two panoramas, dense correspon-
dences between their pixels are constructed to formulate and mini-
mize the geometric distance iteratively [Besl andMcKay 1992]. Some
variations of this strategy further purpose different optimization
functions [Lefloch et al. 2017; Rusinkiewicz and Levoy 2001; Segal
et al. 2009]. For simplicity, we choose to use the original form of
Generalized-ICP [Segal et al. 2009] reformed with our obtained pixel-
wise uncertainty model, to estimate the relative transformation Tst
between two 3D panoramas Os and Ot :

argmin
Tst

∑
Psi ∈Os

∥PAt j − Tst · PAsi ∥
2
ΩAsi,t j

, (8)

where PAxi ∈ Ox is the position of a depth pixel i in the 3D Cartesian
coordinates A of panorama Ox . Given a source pixel PAsi , we follow
the original nearest neighbor strategy to pick its correspondencePAt j
on the target frame (again with λa for rejecting those exceeding the
maximum distance). Tst is initialized based on the estimated trans-
formation between their matched ORB features. Specifically, the
covariance ΩAsi,t j for computing the cost of such a correspondence
is calculated as:

ΩAsi,t j =Rst · Ω
A
si · R

⊤
st + ΩAt j ,

with ΩAxi ≜Ω
A,sur f
xi + ΩA,meas

xi

≈Ω
A,sur f
xi + JK′

e
· ΩS,meas

xi · J⊤K′
e
,

(9)

where we use the Gaussian mixture model according to the current
estimation of relative rotation Rst for combining covariances of
each pair of pixels ΩAsi and ΩAt j . For each covariance ΩA, it is now
combined by two parts, namely, the original surface distribution
covariance ΩA,sur f [Segal et al. 2009] and our newly considered
measurement covariance ΩA,meas . Assuming a normal distribution
for each measurement PS with covariance ΩS,meas in the spher-
ical coordinate S, we transform it from S to A approximately by
the first-order derivative, where K′

e (·) is the equirectangular back-
projection function, and JK′

e
∈ R3×3 is the Jacobian matrix of K′

e (·).
We assign ΩS,meas = diag(σ 2

ϕ ,σ
2
θ ,σ

2
z ), with σϕ = σθ = 0.5 · π/H

(H being the height of the panorama image) for considering the
generated measurement uncertainty during rasterization, and σ 2

z as
summarized during panorama construction.

We use at most 50 iterations for solving each pair of panoramas,
as it is sufficient for convergence in experiments. A visualization
of the covariance used during the registration is shown in Fig. 5-
Bottom. We demonstrate the effectiveness of such a form of mixed
covariance, as well as our measurement uncertainty model, by a
quantitative comparison to the original form, the combination with
a general noise model [Handa et al. 2014], and some other alternative
cost functions in Sec. 6.3.
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No Correspondence 0 1

Fig. 5. An example of a registration attempt between two panoramas, match-
ing the source frame (Top-Left) to the reference frame (Top-Right). The
location of the source frame in the reference frame is marked as the purple
cylinder on the left. Bottom: the weight map of a registration attempt, which
is normalized and colorized decreasingly from blue to red. Pixels with no
correspondences are drawn in black.

5.2 Maximum-a-Posteriori Integration
To alleviate the inconsistency of surfaces when merging multiple
panoramas and generating the final point cloud of the scene, we
merge multiple corresponding measurements into one final point
during final integration. If a pixel Pt j is the best correspondence
of Psi and vice versa, we treat these two pixels as a mergeable pair.
Base on the strategy above, we use a union-find algorithm to union
those mergeable pairs when associating pixels on all panoramas,
and denote the final disjoint set asU.
Finally, if there exists more than one observation Pk in each

disjoint set Uj , we consolidate these measurements through the
maximum-a-posteriori (MAP) estimation about its final location Yj
in 3D Cartesian coordinates as follows:

argmax
Yj

∑
Pk ∈Uj

E(fob,Sk, j )

fob,Sk, j ∝ exp(−
1
2
∥PSk − Ke (T−1k · Yj )∥

2
ΩSk

),

(10)

with Tk the final pose of the panorama containing pixel Pk . If a
scene contains redundant pairwise registrations, we additionally use
a pose graph approach [Grisetti et al. 2010] to refine the final pose of
each panorama, with the covariance of each edge set equally during
the optimization. For Equation 10, we can deduct an analytical
solution for Yj , as:

Yj =

[ ∑
Pk ∈Uj

(RkΩ
A
k R

⊤
k )

− 1
2

]−1 [ ∑
Pk ∈Uj

(RkΩ
A
k R

⊤
k )

− 1
2 · TkP

A
k

]
.

(11)

6 EXPERIMENTS AND RESULTS
In this section, we first briefly introduce our data acquisition pro-
cess and some implementation details as well as the discussions
on parameter settings (Sec. 6.1). We present our evaluation on the
quality of panorama construction (Sec. 6.2) in comparison to previ-
ous reconstruction systems for demonstrating the impact of graph
factors proposed in Sec. 4.1, and assess different depth stitching
strategies discussed in Sec. 4.2. The performance of the used noise-
aware panorama registration method (Sec. 5.1) and its subsequent
MAP integration (Sec. 5.2) are also tested with several candidate
approaches in Sec. 6.3. We finally run an experiment to assess the in-
fluence of the angular interval of used frames (Sec. 6.4), and discuss
the limitations and possible enhancements (Sec. 6.5). We also refer
readers to our supplementary materials containing reconstructed
panoramas and their corresponding point clouds.

6.1 Implementation Details
Real-world assembly.We use the Turtlebot3 as our rotator, which
reliably performs in-place rotation and is assembled with an ele-
vated sensor bracket containing three PrimeSense sensors (version
1.08) for separately capturing 480p RGB-D streams at 30 Hz (Fig. 1).
These sensors are mounted with 45◦ difference in the inclination
angle, with nearly 1◦ overlap between neighboring cameras and
reach almost 135◦ vertical Field-of-View (FoV). In our experiments,
we scanned 73 panoramas for different types of scenes including
corridors, meeting rooms, offices, and halls. For each panorama,
it took the robot about 32 seconds to rotate by 360◦ in place and
produce about 960 × 3 frames. For each scene, the average distance
between panorama locations is about 2 meters. As an example, the
office scene shown in Fig. 1-Right uses six panoramic scans for the
final integration.

Simulated scans.We prepared simulated scans through the two
synthetic scenes presented in ICL-NUIM [Handa et al. 2014]. Robot
motions are simulated in Gazebo, a robot simulation platform for
experiments, with the trajectories of these sensors extracted for per-
forming highly-realistic rendering. We add depth noise according
to the model proposed by Handa et al. [2014]. Synthetic scans are
particularly useful for quantitative evaluation due to the available
ground truth, and we constructed six simulated scans with five ad-
jacent pairs (within 3.0 meters and able to contain sufficient overlap
for registration) on two scenes (denoted as SL for the living room
and SO for the office).

System implementation details. Similar to some visual SLAM
approaches [Mur-Artal and Tardós 2017], we divide the processing
into a front-end for receiving frames and establishing correspon-
dences, and a back-end for continuously performing optimization.
Specifically for Equation 4, we choose g2o [Kümmerle et al. 2011] as
the framework for solving these optimization problems. For register-
ing two panoramas, our approach is based on the Generalized-ICP
in the Point Cloud Library (PCL) [Rusu and Cousins 2011], which
is a single-thread CPU implementation. All experiments were per-
formed on a desktop PC with i7-6850K CPU (3.6 GHz, 6 cores),
NVIDIA Titan Xp (12 GB and 3840 processing units), and 32 GB
RAM.
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Parameters.Most of the parameters in our system are physically
meaningful. Ωr eд in Equation 2 reflects the stability of rotation, i.e.,
adjusted according to the severity of vibration along its 6-DoF as
5.0 mm for translational and 0.5◦ for rotational standard deviations.
Ωvel in Equation 3 is the reciprocal of angular acceleration variance
during scanning. According to the consistency of the rotation of the
chassis, such variance is assigned as 1◦/s2. λa = 0.15 m in Sec. 4.2
and Sec. 5.1 as discussed before indicates the typical discontinuities
between scene instances, and such a threshold is prevalently used in
frame registration algorithms [Segal et al. 2009; Whelan et al. 2015a].
λb in Equation 5 is assigned according to the chosen smoothness
term, see Sec. 6.2 for details.

6.2 Panorama ConstructionQuality
Reconstruction with unsynchronized cameras.We first assess
the quality of tracking unsynchronized cameras in comparison to
various publicly available systems. Since most of them are devel-
oped for single camera cases, we pre-stitch the frames from different
cameras for subsequent processing, where the result is a sequence
of 640 × 1280 images with their focus and focal length the same as
the middle camera in order to maximize the used range of observed
regions. During stitching, we use two types of relative transforma-
tions to reproject and generate these stitched frames: (1) Extrinsic
parameters (EX). (2) Ground-truth relative poses (GT). The first
type is easy to obtain in practice but causes misalignment (Fig. 6).
The second type ensures the correctness of asynchronous handling
for other approaches, to make sure they are not affected by the
imperfect input.
We choose two sets of algorithms developed for RGB-D scans

for comparison: (1) Dense reconstruction methods based on TSDF:
InfiniTAM v2 [Kähler et al. 2015] and the state-of-the-art Bundle-
Fusion [Dai et al. 2017b]; based on surfels: ElasticFusion [Whe-
lan et al. 2015b]. (2) A representative RGB-D SLAM method: ORB-
SLAM2 [Mur-Artal and Tardós 2017]. Both sets are quantitatively
evaluated with their original parameters. Since ORB-SLAM2 is not
designed for dense reconstruction, we utilize all its keyframes to
stitch unorganized point clouds for comparison. To concentrate on
the quality of the joint tracking of multiple cameras (Sec. 4.1) and
remove the effects of our proposed panorama integration strategies
(Sec. 4.2), we use both TSDF volume and surfels to fuse these tracked
frames in our approach. For our TSDF integration, the voxel size is
set as 5.0 mm and truncated by 6.0 cm, as the default configuration
suggested by BundleFusion [Dai et al. 2017b]. For surfels, we use
the update strategy proposed by ElasticFusion [Whelan et al. 2015b]
with their default parameters, and test two versions of depth cut
off (3-meters for its default configuration and 4-meters for consis-
tency with BundleFusion). The Root Mean Square Error (RMSE)
between the reconstructed models (point clouds or vertices from
reconstructed meshes) and ground truth models are calculated by
computing the distance of all matching points on these two models.
We summarize quantitative comparisons in Table 1. Due to the

randomness of the camera startup time, the average frame interval
of pre-stitched pairs among different test cases varies from 0 ms
to 16 ms, causing different severity on different scans. As a result,
our method with both TSDF volume and surfels for integration

Fig. 6. Left: Pre-stitching three temporally adjacent frames through their
extrinsics causes misalignment due to the motion that occurs during the
interval between their shutter time (16 ms in this example). The artifacts
can be perceived through overlapped areas but are essentially a systematic
drifting between frames. Right: Our stitching results according to the tracked
pose of these frames.

achieves better results than other systems on a majority of simulated
scans, even when other methods are fed with ground-truth stitched
frames which are hard to acquire in practice. This demonstrates
our effectiveness of jointly and precisely estimating the trajectories
of unsynchronized cameras. Given our tracked poses, the surfel
representation outperforms the TSDF volume because these surfels
are more flexible, i.e., they need not be fixed at the center of each
voxel for constructing the output mesh as vertices. Also, choosing a
small cut off parameter for raw measurements is beneficial for the
quality, since the error of depth measurements from such RGB-D
cameras is positively related to the distance. However, reducing the
maximum distance limits the scope of the reconstruction at each
scanning position.

Tracking with a single camera. We next compare our fac-
tor graph approach with two SLAM approaches, namely Taylor
et al. [2015] and ORB-SLAM2 [Mur-Artal and Tardós 2017], and
also with a baseline which only contains observation factors (Equa-
tion 1). This time only the middle camera is used since it always
contains most feature points for tracking while others are some-
times insufficient. The major difference between our approach and
the compared methods are the two additional regularization factors
(pose regularization and smooth angular velocity, Equations 2 and 3)
in the graph optimization.

In this experiment, we stitch ground truth depth maps according
to the generated trajectory and calculate the RMSE w.r.t. ground
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Table 1. Statistics of geometric quality for different reconstruction methods
in RMSE (millimeters). SX-Y stands for the Y-th scan in the synthetic scene
SX. EX stands for using the extrinsics from calibration to stitch these frames,
while GT for the ground-truth stitching.

SL-1 SL-2 SO-1 SO-2 SO-3 SO-4
InfiniTAM v2 (EX) 116.45 91.32 42.65 67.34 81.97 95.66
ElasticFusion (EX) 89.43 85.61 29.40 49.84 12.36 35.73
BundleFusion (EX) 10.24 26.47 16.23 11.17 19.05 20.09
ORB-SLAM2 (EX) 23.18 33.64 16.44 15.23 17.02 22.36
InfiniTAM v2 (GT) 108.87 81.90 34.71 58.42 80.92 87.35
ElasticFusion (GT) 84.55 79.18 28.98 44.69 10.30 32.46
BundleFusion (GT) 10.20 19.98 16.27 10.46 18.11 17.65
ORB-SLAM2 (GT) 21.06 19.99 16.62 14.36 16.20 21.39
Ours (TSDF Vol.) 11.67 12.03 15.54 17.24 15.42 16.89
Ours (Surfels-4m) 6.87 5.54 5.32 5.34 6.10 6.08
Ours (Surfels-3m) 5.16 4.14 4.47 4.52 3.93 4.15

truth models, which is thus equivalent to the trajectory assess-
ment, since the severity of the deviation of the trajectory is directly
reflected as the quality of the stitched point clouds. From the quan-
titative results in Table 2, it can be seen that our augmented factors
effectively enhance the trajectory by a considerable margin.

Table 2. Reconstruction quality (RMSE in millimeters) by different ap-
proaches with a single camera. Ours (BA only) is for a comparative experei-
ment, where neither pose regularization factors (Equation 2) nor velocity
smoothness factors (Equation 3) are used.

SL-1 SL-2 SO-1 SO-2 SO-3 SO-4
Taylor et al. 45.4 167.8 9.4 18.5 16.8 11.9
ORB-SLAM2 46.6 149.3 5.8 20.7 11.1 9.4
Ours (BA only) 46.9 147.8 6.3 19.2 11.5 10.0
Ours 13.4 37.2 4.1 9.1 7.5 6.8

Integrationwith different structures and strategies.We per-
form experiments on multiple frame integration approaches men-
tioned in Sec. 4.2. Seven approaches in total (with three already
listed in Table 1) are tested with same trajectories obtained from the
proposed joint tracking of multiple cameras: (1) Integration by TSDF
volume, as a general frame integration algorithm. (2) Integration
by surfels, with 4-meter adoption to remain consistent with other
integration structures. (3) Averaging in the panorama image domain
(ERP). (4) TV-L1 performed in the panorama image domain with
cylindrical coordinates. (5) Total Surface Area with L1 (Equations 5
and 6) denoted as TSA-L1. (6) Total Planarity with L1 (Equations 5
and 7) denoted as TP-L1. For the balancing parameter λb , we tra-
versed its possible value and learned that a good choice should
make the ratio of the data term to the smoothness term around 4.0.
Hence, we use 50, 5 × 103, and 2 × 108 for TV, TSA, and TP terms,
respectively.
Results of these variants of frame integration are listed with

their RMSE w.r.t. the ground truth model in Table 3, which shows
the effectiveness of enhancing the geometric quality by present-
ing optimization in such an image domain rather than the general
data structure TSDF. On the other hand, all these three candidate

optimization methods achieve better quality than the straightfor-
ward averaging, and TSA-L1 is slightly higher than other methods
on all tested panoramas. In addition, this RMSE-based measure is
friendly to the surfel based representation, since such a measure
only captures quality statistics of the centroid of each surfel. But
when treating surfels as disks for ray-casting images, its quality is
also affected by the normal and radius of surfels (see ‘RC’ in Ta-
ble 3 assessing the correctness of depth pixels on their projected
panorama, also with visualized examples in Fig. 4).

Table 3. Statistics of reconstruction quality for different frame integration
methods in RMSE (millimeters).

SL-1 SL-2 SO-1 SO-2 SO-3 SO-4
TSDF Vol. 11.67 12.03 15.54 17.24 15.42 16.89
Surfels-4m 6.873 5.539 5.317 5.343 6.102 6.076
Surfels-4m (RC) 7.962 6.921 6.922 6.658 7.628 8.683
ERP Ave. 5.763 4.449 6.778 6.534 7.516 7.401
ERP TV-L1 4.915 3.589 5.596 5.062 6.140 6.245
ERP TSA-L1 4.915 3.544 5.515 5.025 6.093 6.203
ERP TP-L1 4.986 3.749 5.617 5.080 6.190 6.305

Visual comparisons on stitched sequences. Fig. 7 presents
visualized qualitative comparisons between ours (TSA-L1) and other
methods, where the othermethods are fedwith extrinsically-stitched
frames (EX in Table 1). It can be seen that both BundleFusion and
ours succeeded to perform robust tracking in various scene types in
the test dataset. However, our methods have better reconstruction
quality on detailed objects than BundleFusion. In the last two rows,
we show bird-eye views and colorize the scenes based on the er-
ror of each point/vertex. It shows that our method performs better
than BundleFusion especially in those relatively far areas to the
viewpoint.

Additional results for real-world scans are shown in Fig. 10. When
compared to the synthetic scans, real-world sequences additionally
contain more uncertain data located in the intersected region of
adjacent cameras (two narrow bands), and some even contain highly
uncertain scattered speckles since the depth sensing is mutually
interfered by erroneous stereo matching of active IR patterns.

6.3 Registration and Integration for Panoramas
Performance of registration approaches. We demonstrate the
effectiveness of our calculated uncertainty model by comparing it
to some alternative registration algorithms or configurations. Three
categories of cost functions are used for this experiment, as: (1)
Point-to-point ICP (denoted as p2point) [Besl and McKay 1992]. (2)
Point-to-plane ICP (denoted as p2plane) [Rusinkiewicz and Levoy
2001]. (3) Generalized-ICP [Segal et al. 2009]. For point-to-plane ICP,
we use both the original form, and a variant [Lefloch et al. 2017],
denoted as (Curv), which considers both the confidence counter
and the curvature for weighting different pixels. For Generalized-
ICP, we additionally test its variant, Anisotropic-ICP [Maier-Hein
et al. 2012], which chooses to pick the closest point according to the
Mahalanobis distance rather than Euclidean distance. In addition
to Generalized-ICP, two alternative forms of covariances are also
evaluated, including (1) the original surface uncertainty model (as
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a) InfiniTAM v2 b) ORB-SLAM2* c) ElasticFusion d) BundleFusion e) Ours (TSA-L1)

Fig. 7. Results of different reconstruction methods visualized as meshes. For synthetic scenes in the last two rows, meshes are color-coded to show their
RMSE. Our approach achieves better geometric quality among these tested scans. For uniform display, we use 4-meter cut off for all output assets in this
figure but keep their parameters as default for quantitative evaluation (Table 1).

Ω ≜ Ωsur f in Equation 9), and (2) the mixed uncertainty model (as
Ω ≜ Ωsur f + Ωmeas

0 ) with a general noise model Ωmeas
0 derived

fromHanda et al. [2014] denoted as (Def.). For all tested methods, we
remove those depth measurements with their summarized standard
deviation σz larger than 0.15 meters as unified pre-processing.

Quantitative results are given in Table 4. When compared to the
Generalized-ICP, the point-to-plane cost function and its weighted
variant are in fact a simplification of the general uncertainty-aware

form. Hence its performance is generally worse, but a weighting
scheme emphasizing confidence and low-curvature pixels is appli-
cable. Our proposed strategy, which uses the mixture of the mea-
surement uncertainty and the surface distribution uncertainty, has
demonstrated its advantage on all tested scan sequences in compar-
ison to the original form. In addition, through replacing the general
measurement uncertainty model (Def.) by our derived variance
information, the geometric quality of registration can be further
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improved. Revising the correspondence searching scheme is ben-
eficial to our quality in theory, but we found only 13.99% of the
correspondences are changed by replacing the Euclidean with the
Mahalanobis distance [Maier-Hein et al. 2012], leading to limited
improvement (0.003 mm on average for RMSE) on these tested reg-
istrations.

Table 4. Registration quality (RMSE in millimeters) of every pair of panora-
mas. SA-XY stands for registering the X-th scan to the Y-th scan of scene
SA.

SL-12 SO-13 SO-14 SO-23 SO-24
P2point-ICP 5.918 10.37 6.492 6.528 6.513
P2plane-ICP 4.014 4.870 5.197 5.404 5.951
P2plane-ICP (Curv) 3.914 4.605 4.845 5.162 5.537
Generalized-ICP 3.938 4.533 4.878 4.699 4.650
Anisotropic-ICP 3.957 4.449 4.784 4.558 4.610
Generalized-ICP (Def.) 3.879 4.410 4.736 4.530 4.613
Generalized-ICP (Ours) 3.867 4.399 4.722 4.523 4.594

Performance of the final integration. We further test candi-
date methods for integrating multiple panoramas after their rel-
ative poses are estimated through our proposed inter-panorama
registration. Two strategies, namely the Euclidean averaging and
the proposed MAP (Equation 10), are performed for all mergeable
groups. Table 5 shows the geometric quality in RMSE among differ-
ent combinations, which reflects the necessity of merging and the
advantage of the MAP integration.

Table 5. Final integration quality of panoramas in RMSE (millimeters). SO
stands for registering all panoramas from the synthetic office scene.

SL-12 SO-13 SO-14 SO-23 SO-24 SO
Align only 3.867 4.399 4.722 4.523 4.594 4.179
Align + Ave. 3.497 4.213 4.495 4.299 4.329 3.916
Align + MAP 3.483 4.206 4.483 4.299 4.327 3.909

6.4 Sampling Interval for Quality and Efficiency
Finally, we analyze how the the sampling interval of viewing direc-
tions for each panorama affects the speed and quality of panorama
construction, since when the interval is larger, the scale of the
optimization (Equation 4) will become smaller due to fewer valid
observations. In detail, we use one out of every n frames (from 2
to 90, i.e., the horizontal angle interval between adjacent frames
from 0.375◦ to 33.75◦) to change the density of involved frames,
and record the resulting quality in RMSE with the running time for
optimization (Equation 4) as shown in Fig. 8. It can be seen that the
reconstruction quality remains at least centimeter-level on the test
set, even when most of the frames are skipped. Typically when n
is greater than 16, the optimization cost starts to be acceptable for
online applications. The main disadvantage of such acceleration is
due to the decreasing number of the observations per pixel, which
weakens the reliability of the uncertainty map, especially when the
angle interval of adjacent frames exceeds half of their horizontal
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Fig. 8. The impact of the sparsity (controlled by different values of n) on the
reconstruction quality and optimization times. The error increases slightly
while the time cost is significantly reduced.

FoV, resulting in only one observation on some of the pixels (e.g.
n = 64, 90 in Fig. 9). In summary, in real-time applications to support
motion planning, we suggest to use about n = 16 to balance the
quality and efficiency.

Finally, we summarize the average time spent on each operation
in Table 6 with n = 16 (60 × 3 = 180 frames). The mixture of
an additional measurement uncertainty covariance, as well as the
analytical solution for MAP integration (Equation 11), does not
bring changes to the time complexity. As a result, our system can
perform online reconstruction when the density of involved frames
are carefully configured, at the expense of a centimeter-level drop
of accuracy. Typically for a scanning task, it takes about 35 seconds
for our platform to perform stable rotation and 30 seconds (with 10
m/s move speed) to go to another viewpoint.

Table 6. Computational time of each module in our system. The angular
interval of the involved frames (n) mainly affects the time spent for tracking
as shown in Fig. 9.

Per frame (ms) Per panorama (s) Per pano. pair (s)
Landmarks Rendering Tracking Optimize Align Integrate
(front end) (Sec. 4.2) (Sec. 4.1) (Sec. 4.2) (Sec. 5.1) (Sec. 5.2)

4.3 57.3 3.02 13.94 35.92 2.63

6.5 Limitations
Our proposed approach has several limitations. First, our system
does not address dynamic objects, since it is designed to be deployed
in fully-static environments. Improvements can be made through
integrating a reliable segmentation module [He et al. 2017]. Second,
color consistency between different cameras is still not satisfied due
to their inconsistent exposure and white balance. A post-processing
stage for blending colors from different cameras is recommended
for a better experience in VR/AR applications. Lastly, depth mea-
surements in overlapped regions have relatively higher noise due to
the interference of adjacent cameras. Although our system is able
to detect and reduce their influence (as shown in Fig. 5-Bottom),
such measurements still require further processing. Scanning on
rugged scenes with uneven floor or relatively unstable platforms is
also worth testing.
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Fig. 9. Results of different sparsity configurations, visualized in depth
panoramas colorized by RMSE (Left), and the number of observations (Right)
visualized through the colormap (Bottom).

7 CONCLUSION
In this paper, we presented a reconstruction system based on a
panoramic scanning scheme for successively constructing isolated
3D panoramas and scenes. In the panorama construction stage, we
utilize the raw depth information and consensus motion to perform
asynchronous camera tracking, and then combine these tracked
frames to deduce pixel-wise depth uncertainties, which are subse-
quently used to provide a high-quality panorama. In the panorama
integration stage, multiple panoramas are aligned considering these
uncertainties to form the final point cloud of a scanned scene. We
demonstrate that our system can be applied to low-cost hardware
assembly without additional auxiliary devices such as the time syn-
chronizer or external odometry providers, and succeeds in maintain-
ing sufficient quality for high-fidelity scene representations. In the
future, we would like to extend our system to cooperate with a mo-
tion planning technique that produces discrete position suggestions
to explore and reconstruct indoor scenes autonomously.
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