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Abstract

Bare-earth identification selects points from a LiDAR
point cloud so that they can be interpolated to form a repre-
sentation of the ground surface from which structures, veg-
etation, and other cover have been removed. We triangulate
the point cloud and segment the triangles into flat and steep
triangles using a Discriminative Random Field (DRF) that
uses a data-dependent label smoothness term. Regions are
classified into ground and non-ground based on steepness
in the regions and ground points are selected as points on
ground triangles. Various post-processing steps are used
to further identify flat regions as rooftops and treetops, and
eliminate isolated features that affect the surface interpola-
tion.

The performance of our algorithm is evaluated in its ef-
fectiveness at labeling ground points and, more importantly,
at determining the extracted bare-earth surface. Extensive
comparison shows the effectiveness of the strategy at se-
lecting ground points leading to good fit in the triangulated
mesh derived from the ground points.

1. Introduction

LiDAR (Light Detection and Ranging) systems gener-
ally return a three dimensional point cloud containing co-
ordinates corresponding to elevations measured from over-
head. In recent years, LiDAR data is increasingly available
at high resolution and broad coverage, leading to applica-
tions in object recognition, forest measurement, and land
use planning. This paper focuses on the analysis of the air-
borne LiDAR point cloud (Figure 1 (a)), and presents tech-
niques of removing the non-ground objects and extracting
the bare-earth surface (Figure 1 (b)).

This paper is motivated by the needs of reconstructing
accurate 3D bare-earth surface from airborne LiDAR data.
For the production of digital elevation models, the man-
ual classification and quality control pose the greatest chal-
lenges, consuming an estimated of 60-80% of processing
time [12]. The ability to automatically classify LiDAR

points would significantly impact this process and speed up
the delivery time.

Identifying ground points from the airborne LiDAR
point cloud is challenging. Firstly, the LiDAR point cloud
is irregularly sampled, and thus typical image processing
techniques cannot be directly applied to analyze the LiDAR
point cloud. Secondly, the scenes are usually very complex,
consisting of buildings, cars, trees, slopes, rivers, bridges,
cliffs, etc. Adequately modeling the ground surface and the
non-ground objects is difficult.

(a)

(b)

Figure 1. (a) The original 3D mesh, a De-
launay triangulation of the 3D LiDAR point
cloud. (b) The deforested 3D mesh after re-
moving all non-ground data points.



This paper explores the use of probabilistic methods, in
particular, Discriminative Random Fields [9], in develop-
ing methods for estimating the underlying bare-earth sur-
face hidden in the point cloud of surface observations gen-
erated by airborne LiDAR sensors. We set out to use as
much local structural information as possible, while avoid-
ing commitments to particular models such as buildings or
pre-determined vegetative cover models.

Our model begins with a triangulation of the point cloud.
Section 3 describes the underlying model of the triangles
and surfaces, and the Discriminative Random Field (DRF).
Then it explains how post-processing of the segmentation
determined by the DRF can eliminate some structural ele-
ments initially misclassified.

Section 4 reports the evaluation of the method regard-
ing classification of all points from a well-known dataset,
and comparison of the bare-earth triangulation with manu-
ally corrected data from our industrial partners, Terrapoint
[15]. We conclude with a description of our implementation
platform and comments on future work.

2. Related Work

In order to estimate the bare-earth surface, filtering al-
gorithms [12] are applied to the point cloud to remove the
points belonging to non-ground objects. Sithole and Vos-
selman [12] classify filtering algorithms into four groups:
slope-based, block-minimum, surface-based (based on lo-
cal parametric surface fits), and clustering. Their paper also
provides a review of the techniques and a detailed compari-
son of the performance of the various filtering algorithms.

The surface-based algorithms ([7, 8] among others) as-
sume that the surface is smooth, and that deviations from
smoothness represent non-ground points, leading to the de-
spike algorithm which iteratively removes deviations from
a locally smooth surface. A widely used software package
called SCOP [1] is implemented based on this idea.

However, the robust interpolation algorithm [8] relies
on a good mixture of points of earth and non-earth, and
it cannot handle the situations of large dense vegetation
and large buildings. In order to tackle this problem, Briese
et al. [3] presented hierarchic robust interpolation that iter-
atively performs robust interpolation [8] from a coarse-to-
fine approach.

The filter developed by Vosselman [17] epitomizes the
slope-based filtering approach. Vosselman uses the slopes
of a points to its nearby points within a range as a criterion
for classifying ground points. If any of its slopes is greater
than a predefined threshold, Vosselman classifies the point
as an object point. This method is closely related to the ero-
sion operator used for mathematical gray scale morphology.

One of the problem of the slope-based filter [17] is its
inability to correctly classify ground points on steep slopes.

To tackle this problem, Sithole [11] extended the idea to
a slope adaptive filter, which adaptive tunes the threshold
according to the slopes of the terrain.

Our work, like several presented in that study, uses a tri-
angulation of the point cloud to provide neighborhood infor-
mation of data points. A triangle-based segmentation and
several region-based post-processing techniques are then
used to identify the ground points. The algorithm presented
by Sohn and Dowman [13] is also based on triangulation.
However, in their approach, they simplify and then densify
the triangulation to develop a minimal triangulation that ap-
proximates a lower envelope of the point cloud.

3. Algorithm

3.1. Overview

Instead of classifying vertices into ground and non-
ground, we decided to work with triangles. Thus, we first
triangulate the LIDAR data to obtain a 3D mesh. At the be-
ginning, we assume every triangle belongs to the bare-earth.
Then, we apply two algorithms to identify the non-ground
triangles. The first algorithm finds the triangles belonging
to buildings and high trees. The second algorithm locates
the triangles belonging to low trees. Our algorithm then re-
moves these non-ground triangles and performs Delaunay
triangulation again to obtain the 3D mesh of the bare-earth.

3.2. Segmentation

The two non-ground triangle detecting algorithms start
from segmenting the mesh into steep and flat regions. The
feature we use is the up-angle of the triangle. The up-angle
is defined as the angle between the normal of the triangle
and the vector pointing to the sky (i.e., (x, y, z) = (0, 0, 1)).
As a result, a flat triangle has a small up-angle while a
steep triangle has a large up-angle. The segmentation can be
achieved by first classifying each triangle into either steep
or flat, and then clustering all nearby triangles with the same
category into a single region.

Classifying triangles into steep and flat ones can be
solved by minimizing an energy function inspired by the
binary image segmentation algorithm presented in [14]. We
construct a Discriminative Random Field [9] (a variant of
the Conditional Random Field (CRF) [10]) to model the
relationship between the observed 3D mesh and the cate-
gories of triangles. In the Discriminative Random Field,
we construct a graph where nodes represent triangles and
edges connecting two neighboring triangles. 1 The energy
function has two kinds of potentials. Let lp be the label of
triangle p (in our case, the label can be either steep or flat).

1Two triangles are neighbors if they share the same edge.
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Figure 2. (a) The original 3D mesh. (b) Segmenting triangles into steep (green) and flat (red) regions.
(c) Classification results after locating buildings and high trees (d) Classification results after lo-
cating low trees. In (c) and (d), red-colored regions represent the bare-earth while green-colored
regions represent the non-ground objects.

The unary potentialDp(lp) measures the likelihood of label
lp given the observed features from the data, which is also
known as the data cost. The pairwise potential V (lp, lq) pe-
nalizes the difference of lp and lq , which can be considered
as the smoothness cost. Specifically, the energy function is
defined as:

E =
∑

p

Dp(lp) +
∑

p,q∈N

wpqV (lp, lq) (1)

where wpq is a data-dependent weighting function and
p, q ∈ N means p and q are neighboring triangles.

The unary potential Dp(lp) measures the likelihood of
label lp given the observed features from the data. In partic-
ular, we define the data energy cost Dp(lp) as:

Dp(lp) =

{
‖S(p)− µsteep‖2/µ2

steep if lp = steep
‖S(p)− µflat‖2/µ2

flat if lp = flat
(2)

where S(p) is the up-angle of triangle p. The quantity
(µsteep, σsteep) and (µflat, σflat) denote the mean and
variance of the up-angles of the flat and steep triangles, re-
spectively.

The pairwise potential V (lp, lq) is a standard Potts model
which penalizes the difference between lp and lq . Specifi-
cally, V (lp, lq) is defined as:

V (lp, lq) =

{
λ1 if lp 6= lq

0 otherwise
(3)

where λ1 is a smoothness constant specified by the user.
The standard Potts model favors smooth label assignment
and ignores the observed data, and therefore the edge be-
tween the flat and steep regions will be over-smoothed. In
order to tackle this problem, we introduce a data-dependent
weighting function wpq that reduces the influence of the
Potts model on the edges. The weighting function wpq is

defined as:

wpq = exp(−β‖S(p)− S(q)‖2) + λ2 (4)

where S(p) and S(q) are the up-angles of the triangles p
and q. The quantity of β is set to (2〈‖S(p) − S(q)‖2〉)−1

where the expectation denotes an average over the mesh.
The purpose of λ2 is to remove small and isolated areas that
have high up-angle contrast.

The minimization of the energy function Eq. (1) can be
solved exactly because lp is binary, i.e., a triangle can be
either steep or flat. We use graphcut [2] to minimize Eq. (1)
because it is very efficient [14] and guaranteed to converge
to the global optimum in the binary case.

After classifying every triangle into either steep or flat,
the next step is to cluster nearby triangles with the same cat-
egory into a single region. Figure 2 (b) illustrates the seg-
mentation results. Observe that steep triangles consist of
high trees, walls of buildings, and cliffs; while the flat tri-
angles consist of bare-earth, roof-tops, and some low trees.
Therefore, an intuitive approach is to first assume all steep
triangles belong to non-ground and all flat triangles belong
to bare-earth, and then apply a sequence to heuristics to re-
fine the ground/non-ground classification. The following
sections will discuss techniques of locating roof-tops and
low trees.

3.3. Detecting Buildings and High Trees

This section focuses on the techniques of detecting build-
ings and high trees and classifying them as non-ground tri-
angles.

By looking at Figure 4 (b), we can observe that a build-
ing consists of walls and roof-tops. The walls are usually
steep regions with large up-angles while the roof-tops are
flat regions with small up-angles. Similarly treetops often in
dense groves of trees appear as relatively flat regions, clas-
sified as flat, surrounded by steep triangles. However, the



mountain hills in Figure 4 (a) also have the same character-
istics. The difference between buildings and mountain hills
is that the slopes of mountains are not very steep, i.e., their
up-angles are not as large as those of walls.

In order to differentiate between walls of buildings and
slopes of mountains, we first run our segmentation algo-
rithm with µsteep = 80, σsteep = 10, µflat = 10,
σflat = 10, λ1 = 10, and λ2 = 1. The large µsteep yields
a classification of walls and high trees as steep regions, and
leaves slopes and low trees as flat regions. Then we assume
that all steep triangles belong to non-ground and all flat tri-
angles belong to ground, and then search the ground regions
for the roof-tops and re-classify them as non-ground.

In order to differentiate between roof-tops and bare-
earth, we observe that the roof-top regions usually have
higher elevation than their surrounding triangles. Thus, the
relative height Hrel(r) of a ground region r can be defined
as Hrel(r) = Hg(r) − Hn(r, w) where Hg(r) is the aver-
age height of a ground region r and Hn(r, w) is the average
height of surrounding triangles of ground region r within
a specified width w. By simply thresholding the relative
height, we can effectively distinguish roof-tops from bare-
earth.

Step-like structures in buildings can be located in a sim-
ilar way. Rooftops of lower portions of buildings appear as
flat regions with some surrounding walls higher than them-
selves and some surrounding walls lower than themselves.
Therefore, we classify a ground region as steps if at least
20% of its surrounding triangles are 30 cm higher and at
least 20% of its surrounding triangles are 30 cm lower than
the ground region. We found out that this simple criterion
works nicely in all our test datasets.

Figure 2 (c) shows the results after re-classifying the
roof-tops as non-ground. We can observe that high trees
and buildings (including their roof-tops) are correctly clas-
sified as non-ground objects while regions with low trees
are still classified as bare-earth.

3.4. Detecting Low Trees

This section focuses on techniques for detecting low
trees and forests. Isolated low trees are small cone-shaped
structures. To distinguish isolated low trees from bare-earth,
we run our segmentation algorithm again with µsteep = 60,
σsteep = 10, µflat = 10, σflat = 10, λ1 = 3, and λ2 = 0,
and then re-classify every steep region with area smaller
than a threshold as a non-ground region. In order to locate
the tree-tops, we run the roof-top detection algorithm again,
but in this time, we enforce a new constraint that the area
of tree-tops should be smaller than a threshold. These two
criteria can effectively detect and remove isolated low trees
from the bare-earth (Figure 2 (d)).

The most challenging part is to differentiate a low for-

est (a large region of connected low trees) from the slopes
of mountains. The area of both low forests and mountain
slopes are large, and their up-angles are similar. Fortu-
nately, we can observe that the normals of a tree’s trian-
gles point to many directions, while the normals of slope’s
triangles usually point to a single direction. To utilize this
observation, we first compute the variance of normals of
steep regions and denoted it as (νx, νy, νz). If (νx + νy)/2
is greater than a threshold, then we re-classify the steep re-
gions as non-ground, otherwise, they remain as bare-earth
regions. Although simple, this criterion works nicely and
further remove the non-ground objects that cannot be de-
tected in the previous steps.

4. Evaluation

In order to evaluate the performance of the proposed al-
gorithm, we test our system in two datasets: the Sithole
et al. [12] dataset and the Terrapoint dataset [15]. We use
the same parameter settings for all experiments in these two
datasets.

4.1. Sithole et al. Dataset

The Sithole et al. dataset [12] consists of 15 sites with
various terrain characteristics including buildings, steep
slopes, bridges, terrain discontinuities, ramps, vegetation on
slopes and many others (see the second column of Table 1
for a detailed description). Sithole et al. manually classified
each data point well.

We evaluate the quantitative performance of our system
by the classification errors and the distance between the ex-
tracted and ground-truth bare-earth surface. Note that the
major goal of the system is to extract the bare-earth surface,
and classifying triangles into ground/non-ground is just an
intermediate step towards achieving this goal.

We evaluate the classification performance by Type I,
Type II, and Total Errors. To convert classified points to
classified triangles in the Sithole et al. dataset, we label a
triangle as ground if all of its vertices are labeled as ground;
otherwise, it is labeled as a tree triangle. Letting E1 be
the number of ground triangles that our algorithm mistak-
enly classifies as non-ground and E2 be the number of non-
ground triangles that our algorithm mistakenly classifies
them as ground, the classification errors are defined as:

Err1 =
E1

N1
Err2 =

E2

N2
Err =

E1 + E2

N1 +N2
(5)

where N1 is the number of ground triangles and N2 is
the number of non-ground triangles. The quantities Err1,
Err2, and Err denote the Type I, Type II, and Total Error,
respectively.



Name Special Features # points Type I Error Type II Error Total Error Avg. Distance
1-1 vegetation & buildings on steep slopes 37937 51.75% 1.28% 21.49% 44.28 cm
1-2 buildings and cars 51984 16.65% 2.54% 8.15% 11.58 cm
2-1 narrow bridge 12910 12.71% 9.60% 11.65% 4.99 cm
2-2 bridges & gangway 32595 13.54% 9.51% 11.95% 9.67 cm
2-3 large buildings & disconnected terrain 25056 16.54% 4.14% 9.40% 11.27 cm
2-4 ramp 7469 20.58% 4.93% 14.10% 8.17 cm
3-1 large buildings 28805 7.50% 2.33% 4.57% 6.26 cm
4-1 outliers (multi-path error) 11160 23.42% 2.71% 11.65% 54.33 cm
4-2 rail station 42399 9.07% 3.09% 4.42% 42.30 cm
5-1 vegetation on slope 17845 5.84% 7.32% 6.40% 9.18 cm
5-2 slope 22474 7.59% 25.31% 10.97% 9.33 cm
5-3 disconnected terrain (cliffs) 34348 20.13% 23.05% 20.39% 12.61 cm
5-4 low resolution buildings 8608 6.90% 6.23% 6.40% 15.87 cm
6-1 sharp ridge & ditches 35060 6.63% 7.41% 6.69% 5.00 cm
7-1 bridge & terrain discontinuities 15645 1.47% 44.75% 9.59% 10.29 cm

Table 1. Quantitative evaluation of the Sithole et al. dataset [12].

Name Special Features # points Avg. Distance
1 vegetations & roads 1347446 12.50 cm
2 buildings & cars 2797040 18.63 cm
3 vegetation 9830323 9.78 cm

Table 2. Quantitative evaluation of the Terrapoint dataset [15].

To measure the distance between the estimated and
ground-truth bare-earth surface, we define the distance
dist(p, S) between a point p and a surface S as:

dist(p, S) = min
p′∈S

‖p− p′‖ (6)

The average distance between surfaces S1 and S2 thus can
be defined as

distavg(S1, S2) =
1
|S1|

∫
p∈S1

dist(p, S2)dp (7)

where 1/|S1| is the area of S1. In particular, we use a stan-
dard package named Metro [4] to compute the average dis-
tance between two 3D meshes.

Table 1 shows the quantitative performance of our sys-
tem. The extracted bare-earth surfaces are usually very
good, with average distance around 10 cm. Observe that
the Type II errors (mistakenly classifying tree triangles as
ground) are usually smaller than the Type I errors. This
phenomenon is due to the fact that Type II errors usually
have more negative effects on the final extracted bare-earth
surface, and thus we focus more on minimizing the Type II
errors. However, Type I errors simply reduce the amount
of detail in the bare-earth surface. Another interesting ob-
servation is that good classification performance sometimes
does not translate to a good extracted bare-earth surface

(e.g., site 4-2), and vice versa (site 5-3). For instance, a
small mis-classification on the roof of a building may sig-
nificantly pollute the quality of the extracted bare-earth sur-
face, while mis-classifying a lower tree as bare-earth does
not influence the bare-earth surface that much.

Figure 4 shows the qualitative results of our system. Our
algorithm can nicely deal with most of the cases including
buildings, vegetation, slopes, vegetation on slopes, ramps,
and cliffs. The major difficulties we encounter are buildings
on slope (site 1-1), large pits on the roof-tops (site 4-2),
and bridges (Figure 4 (c)). Bridges are a known problem in
bare-earth classification [12].

4.2. Terrapoint Dataset

The Terrapoint data [15] consists of three huge sites with
millions of data points. The first and third sites contain
vegetation and roads, while the second site is composed
of forests, buildings, and cars. Unfortunately, Terrapoint
classifies dataset in a conservative way, i.e., they mark few
points as ground in order to increase the quality of the bare-
earth extraction. As a result, the ground-truth classification
is not accurate because many ground points are classified
as non-ground. However, in general, this is a wise strat-
egy since, as noted above, incorrect classification of a non-
ground point as ground can significantly affect the accuracy



Figure 3. The Graphite [5] environment and the Lumberjack Toolbox.

of the extracted bare-earth surface.
Table 2 shows the quantitative performance of our sys-

tem on the Terrapoint dataset. Our algorithm is especially
accurate when there is only vegetation (site 1 and 3). In
the case of buildings, cars, and forest (site 2), our system
can still work effectively. Figure 5 visualizes the results of
our system. Observe that our system can detect and remove
trees and buildings to obtain an accurate estimation of the
bare-earth surface.

5. Implementation

We implemented the entire system in C++ and developed
a toolbox called Lumberjack for Graphite [5], a research
software platform for computer graphics, 3D modeling and
numerical geometry. Figure 3 displays a snapshot of the
Graphite environment and the Lumberjack toolbox. The
users can utilize Graphite and Lumberjack to visualize the
3D mesh of the surface, running the proposed bare-earth ex-
traction algorithm, tuning the parameters, and visualize the
results in an interactive way.

6. Conclusion and Future Work

We have demonstrated a bare-earth identification system
based on segmentation of triangulated LiDAR point clouds.
A Discriminative Random Field segments the surface into
steep and flat regions of triangles using data-dependent la-
bel smoothness term. Regions are classified into ground and
non-ground based on steepness in the regions and ground
points are selected as points on ground triangles. Various
post-processing steps are used to further identify flat regions
as rooftops and treetops, and eliminate isolated features that
affect the surface interpolation.

The performance of our algorithm is evaluated in its ef-
fectiveness at labeling ground points and, more importantly,
at determining the extracted bare-earth surface. Extensive

comparison shows the effectiveness of the strategy at se-
lecting ground points leading to good fit in the triangulated
mesh derived from the ground points.

Sithole and Vosselman [12] argued that the most success-
ful filters for deriving bare earth involve local estimation of
the surface over a region of some size. We agree and plan
to extend our analysis to incorporate larger context, most
likely by a coarse to fine analysis.

Complex cityscapes form a true challenge to these fil-
tering methods. In order to address the problem of iden-
tifying structures, much more specific model-based infor-
mation can be applied, i.e., verticality, rectangularity, and
parallelism. Much progress has already been made[16, 6],
in which local fitting of simple parametric surfaces suggests
structures. These same fits can select slope regions as well.
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