
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 1

DeepSketchHair : Deep Sketch-based
3D Hair Modeling

Yuefan Shen1 Changgeng Zhang1 Hongbo Fu Kun Zhou† Youyi Zheng†

Abstract—We present DeepSketchHair, a deep learning based tool for modeling of 3D hair from 2D sketches. Given a 3D bust model
as reference, our sketching system takes as input a user-drawn sketch (consisting of hair contour and a few strokes indicating the hair
growing direction within a hair region), and automatically generates a 3D hair model, which matches the input sketch both globally and
locally. The key enablers of our system are two carefully designed neural networks, namely, S2ONet, which converts an input sketch to
a dense 2D hair orientation field; and O2VNet, which maps the 2D orientation field to a 3D vector field. Our system also supports hair
editing with additional sketches in new views. This is enabled by another deep neural network, V2VNet, which updates the 3D vector
field with respect to the new sketches. All the three networks are trained with synthetic data generated from a 3D hairstyle database.
We demonstrate the effectiveness and expressiveness of our tool using a variety of hairstyles and also compare our method with prior
art.

Index Terms—Sketch-based hair modeling, 3D volumetric structure, deep learning, generative adversarial networks

�

1 INTRODUCTION

The development of digital entertainment leads to the growing
demand for 3D content. 3D virtual human plays a critical role
in the 3D digital world, while 3D hair is probably the most
challenging part of a human body to model. Different from other
parts of the human body that can be well modeled as surfaces, the
hair is usually modeled as strands, reflecting extreme variability
and geometry complexity. What’s more, mutual occlusion among
strands increases the difficulty of hair modeling.

Image-based hair modeling has gained substantial attention in
recent years. It is now possible to reconstruct realistic and high-
quality hairstyles from either multi-view images [1], [2], single-
view images [3], [4], [5], or RGB-D images [6]. Lately, deep
learning based approaches [7], [8], [9] have also been exploited for
modeling 3D hair from images. Although promising results have
been achieved with these methods, one major downside in them
is that hairstyles are extracted from images rather than free-form
designed. For example, all existing image-based techniques focus
on extracting unabridged 3D hair from portrait images, and there
is no interface provided for users to freely modify reconstructed
hair models. For consumer-level applications, it is highly desirable
to have a system that can not only model hair from images or even
from scratch but also be capable of performing efficient free-form
edits, to create user-desired hairstyles.

There are a few prior works focusing on interactive modeling
of 3D hairstyles from sketches. Earlier attempts [10], [11], [12]
produce hair models made up of lots of wisps by heavy and com-
plex interaction. The methods of [13], [14], [15] aim to simplify
interactive modeling of strand-level hair, which can be achieved

1 co-first authors
† corresponding authors

• Y. Shen, C. Zhang, K. Zhou, and Y. Zheng are with the State Key Lab of
CAD&CG, Zhejiang University, China.
E-mail: zyy@cad.zju.edu.cn

• H. Fu is with the School of Creative Media, City University of Hong Kong.

(d)(a) (b) (c)

Fig. 1: Our system, DeepSketchHair, takes as input a 2D sketch
(a) consisting of a hair contour (red) and a few strokes (blue)
indicating the hair growing directions, and generates a realistic
3D hairstyle (b). Users can continue to modify the generated hair
model from another view with a new sketch (c), and our system
updates the result accordingly (d).

by 2D sketches. However, their generated hairstyles do not own
high quality or complex geometry. [16], [17] explore vector field
based methods and use 3D strokes to drive a 3D vector field which
represents the growing direction of hair strands, but authoring 3D
curves is not an easy task for novice users and it is not intuitive
for users to imagine a resulting hairstyle from a vector field.
There also exist professional interactive hair modeling systems
such as Maya, SolidWorks, 3D Max, CATIA, which incorporate
powerful tools for accurate and detailed geometric hair model
construction and manipulation. However, to guarantee the quality
of produced models, these systems sacrifice usability and often
require highly trained skills. Recently, Xing et al. [18] proposed
a hair modeling method, which allows easy creation of high-
quality strand models by interactively authoring 3D curves in VR,
followed by partial retrieval. However, such immersive interaction
requires head-mounted devices and additional hardware setups.

We introduce DeepSketchHair, a deep learning based sys-
tem for easy and intuitive modeling of high-quality strand-level
hairstyles from 2D sketches. As illustrated in Fig. 2, our pipeline
starts with a sketched hair contour, which is easily converted
to a mask map corresponding to the hair region of a desired
3D hairstyle, and additional strokes as a sketch strand map for

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 2

rough specification of sparsely growing direction of the hair.
Then S2ONet, a generative adversarial network (GAN) model for
pixel-to-pixel translation [19], is adopted to predict a dense 2D
orientation field, in which each pixel stores the direction of a 2D
hair strand passing through it. Next, O2VNet, another GAN-based
network, converts the 2D orientation field to a 3D vector field1.
To account for the lack of depth information, we add the depth
map of a 3D bust model as a 3D guidance for O2VNet. Then,
high-quality strand-level hairs are grown from the 3D orientation
field. DeepSketchHair allows users to modify the resulting 3D
hairstyle by inputting additional 2D sketches in new views. Our
generated hair models can be free-form adjusted with the help of
V2VNet, which is also based on GAN but this time for voxel-to-
voxel conversion to update the 3D vector field w.r.t. the user input
under a new view. Lastly, we provide user-friendly auxiliary tools
for fine-tuning the generated hairstyles.

We demonstrate the effectiveness and expressiveness of our
modeling system by creating various hairstyles, spanning a diverse
spectrum of hair shapes, such as smooth, jagged, wavy, or curly.
Our system owns a powerful ability to generate these complex
hairstyles, as seen in Fig. 1 and Fig. 11. In summary, our main
contributions are listed as follows:

• A deep learning based framework for sketch-based hair
modeling, which can generate high-quality strand-level 3D
hairstyles from 2D sketches;

• Three novel generative adversarial neural networks,
namely, S2ONet, O2VNet, and V2VNet, to collaboratively
support multi-view hair modeling.

2 RELATED WORK

Our work tackles the problem of sketch-based hair modeling using
deep learning. Below we review existing works closely related
to our method, namely, those in hair modeling and sketch-based
modeling.

Hair Modeling. Modeling 3D hair strands is a difficult task
due to the variety of hairstyles and the complex structures of
internal hair. Early works in hair modeling start from scratch while
recent works focus more on image-based hair reconstruction. We
refer readers to [20] and [21] for comprehensive surveys on hair
modeling.

Watanabe et al. [10] introduce a wisp model for 3D hair and
this model has been widely applied in early works for interactive
hair modeling. Some of these methods directly model hair strands
cluster by cluster with drawn 3D curves e.g. [22], [23], [24]. Other
approaches allow users to model a hairstyle roughly first and then
solve wisp-based deformation by interaction [11], [12]. Normally,
it is a time-consuming task to model a realistic hairstyle with these
methods, and trained skills are required.

To make the interaction easier, in [14] Malik presents a
sketching interface for modeling and editing hairstyles by con-
trolling the generation and deformation of hair clusters. Wither et
al. [15] explore a physically-based approach to infer physically-
based parameters from 2D user sketches for hair modeling. Using
sketching interfaces makes the modeling process easier and faster,
but the quality of generated hairstyles is not very high. Using
VR equipment, the method in [18] allows easy creation of 3D
curves for partial hairstyle retrieval, which can model realistic

1. We refer to a 3D orientation field as a 3D vector field here to emphasize
its difference from a 2D orientation field.

hair strands. Yet, the interaction is restricted in immersive envi-
ronments with head-mounted devices.

A vector field based solution [16] can reduce the time overhead
of many manual operations and supports complex hair modeling
by initializing or editing the underlying vector fields. One limi-
tation of this method, however, is that vector fields are not very
intuitive for interactive editing. Fu et al. [17] present a method that
allows users to edit a vector field by setting various constraints
using 3D curves. However, authoring 3D curves is not an easy
task for novice users and there is still a gap between input curves
and generated results.

To reduce the complicated manipulation and strengthen the
bond between the input and generated hair, multiple image-based
hair modeling methods have been proposed. Ming et al. [25]
were probably the first to use real images from different views
to generate 3D hair models. Their method builds a 3D volume
for hair generation using extracted information from images, like
hair outline and hair flow direction. However, this method is only
suitable for modeling simple hairstyles. By accurately detecting
hair orientation from images, image-based hair modeling is able
to generate complex and realistic 3D hair models. Paris et al. [26]
use various viewpoints as well as several oriented filters for hair
orientation detection in different local parts. Wei et al. [27] extend
image-based hair modeling to a more flexible level, and their
method does not rely on special capturing setup under controlled
illumination conditions [26]. More recently, Zhang et al. [1]
propose a method which takes only four-view images to generate
a 3D hair model using a predefined hair database. Meanwhile,
a few attempts have been made to achieve single-view image-
based hair modeling. For example, [3] and [28] rely on the human
annotation to generate a hairstyle from a single portrait image. Hu
et al. [5] propose a method based on database retrieval for realistic
3D hair modeling. Single-view based methods can only generate
3D hair models matching the input view and lack control over hair
geometry from new views.

Deep learning techniques have been exploited for single
image-based hair modeling in recent years. Chai et al. [29] in-
troduce a deep convolutional network for segmenting hair regions
and estimating hair growth orientation, which guides their data-
driven hair modeling method. A similar idea is adopted by Hu et
al. [2] for hair digitization, which uses neural networks for hair
classification and region segmentation. Zhou et al. [7] present an
encoder-decoder network architecture to generate strand features
from 2D orientation input for hair growing. Saito et al. [8] extend
this idea by adopting a variational auto-encoder structure [30]
to encode the hair information and image information into one
latent space. Lately, Zhang and Zheng [9] propose Hair-GAN,
which uses a GAN structure with 3D convolutional layers to
generate 3D orientation fields for hair growing. Different from
the above approaches, we consider modeling 3D hair from casual
2D sketches. Unlike images that contain rich information, sketches
are inherently sparse and ambiguous, which could pose significant
challenges for network learning [31].

Sketch-based Modeling. Sketching is one of the most in-
tuitive and easiest ways for users to interact with computers.
However, it remains difficult for computers to interpret freehand
sketches due to their inherent sparsity and ambiguity. This leads
to a thread of sketch-based modeling methods.

Early free-form modeling methods create 3D contents from
user-drawn 2D sketches using inflation (e.g. [32], [33]). Although
inflation is unambiguous, it can only produce rough 3D surface

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 3

Single-View Modeling

Multi-View Modeling

Hair Synthesis

Rotate

Orientaion Field Generation

S2ONet

S2ONet

O2VNet

V2VNet

Hair Synthesis

Fig. 2: The pipeline of our DeepSketchHair framework. The single-view modeling module (top tow) takes as input a user-drawn sketch
on top of a bust model (top left), and generates a hair strand model (top right) from a synthesized intermediate 3D orientation field. The
multi-view modeling module (bottom row) takes as input the bust model, the currently synthesized hairstyle, and an additional sketch
in a rotated view, and generates the updated strand model (bottom right). Our three generative adversarial networks (S2ONet, O2VNet,
and V2VNet) are shown in the middle.

models in simple shapes without self-intersections. Further efforts
have been dedicated to edit generated rough models by drawing
constrain curves like [34]. With strong priors, geometry fitting
based approaches retrieve the most similar 3D geometry structures
of 2D sketches part by part [35], [36]. Yet, the complexity of their
modeling results is limited by simple primitives.

In recent years, deep learning based techniques have also
been utilized to learn a desired mapping from 2D sketches to
3D features. Huang et al. [37] introduce deep convolutional
neural network (CNN) for mapping 2D sketches to procedural
model parameters. Delanoy et al. [38] propose an end-to-end
CNN, which is trained to generate 3D models from 2D multi-
view sketches. In [31], Li et al. learn 2D middle maps to guide
robust 3D modeling from 2D sketches. Lun et al. [39] generate
depth maps from multi-view sketches and then fuse them for 3D
reconstruction. Su et al. [40] learn normal maps directly from 2D
sketches while Han et al. [41] utilize deep neural networks to
predict latent code of faces from 2D sketches for the generation of
detailed face models.

Unlike the aforementioned sketch-based modeling methods,
which aim to infer 3D surfaces from 2D sketches, our task requires
the generation of 3D hair strands exhibiting varying attributes, and
thus cannot be solved directly by applying existing sketch-based
modeling methods. To the best of our knowledge, our work is the
first deep learning based technique for inferring strand-level 3D
hairstyles from 2D sketches.

3 OVERVIEW

Fig. 2 shows our deep learning based hair modeling pipeline.
Given a bust model, the user sketches over it to scribble a hair
mask (the contour, shown in red) and hair strand orientation
strokes (shown in blue). We require the user to draw directed
strokes to mimic the strand growing direction such that the
resulting sketch map is oriented and unambiguous (the tangent
direction serves as the orientation at a specific stroke point). The

backbone of our system consists of three deep neural networks
independently aggregating information to support sketch-based
hair modeling. The first network is named S2ONet (§4.1), which
converts the hair mask and the sketch map to a dense 2D orien-
tation field. The second network is named O2VNet (§4.2), which
maps the dense 2D orientation field to a 3D volumetric vector field,
with the help of the depth map of the bust model. The resulting
3D vector field is then used to grow hair strands for hair synthesis
(§5.3).

Since using only one view of sketches might not be sufficient
to generate user-desired 3D hair strands, our approach allows
users to adjust the currently synthesized hair strands by drawing
additional sketches or masks in new views (§5). The third network,
named V2VNet (§5.1), then updates the volumetric 3D vector field
with respect to the new inputs. More specifically, a newly drawn
sketch is firstly converted to a dense 2D orientation field (by
S2ONet), which is then fed into V2VNet together with the rotated
3D orientation field produced in the previous view to generate
the updated 3D orientation field in the current view. The hair
strands are updated according to the new orientation field. Users
can repeatedly edit the hair strands by sketching in any views.

As complementary tools, auxiliary hair editing operations are
added to support hair refinement (§6.1). The auxiliary operations
include cut, deform, color change, enlength, and so on.

4 SINGLE-VIEW HAIR MODELING

Given a sketch image IS and a mask image IM (Fig. 2), our
goal is to generate a corresponding 3D vector field or orientation
volume Y to grow realistic hair strands. One primary challenge
here is to generate a desired dense 3D orientation field from the
2D sparse and inherently ambiguous input. As shown in [31], a
direct learning of 3D information from sparse 2D sketches could
easily lead to undesirable results. This motivated us to add an
intermediate representation, namely, a dense 2D orientation field,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 4

......

{

Residual blocks
Generator

Discriminator

C

3 16
D

ow
nS

am
pl

e
32

D
ow

nS
am

pl
e

 64

D
ow

nS
am

pl
e

128 128128

U
pS

am
pl

e

 64

U
pS

am
pl

e

U
pS

am
pl

e

32 16 2

3 2 16 32 64 128 1 Input Convolution
Residual block Generated result

ConcatenateC

Fig. 3: Architecture of our S2ONet. For an input pair of sketch
image and mask image {IS , IM}, we enclasp them into a 2D
tensor of size 128×128×3. For the generator, the contracting part
has 3 downsampling convolutional modules with (32, 64, 128)
output channels and the expanding part has 3 upsampling decon-
volutional modules with (64, 32, 16) output channels connected
with 8 residual blocks. The input of our discriminator concatenates
the generated fake 2D orientation map Λ or real map Λ̃ with the
input condition {IS , IM}, which passes through 4 convolutional
layers and 1 full-connected linear layer.

between the sketch domain and the volumetric domain to better
bridge the gap.

In this section, we focus on our single-view hair model-
ing framework, which consists of two main parts: S2ONet and
O2VNet, as illustrated in Fig. 2 (Top). Taking IS and IM as input,
we first generate a dense 2D orientation field Λ with S2ONet.
Next, Λ and the bust depth image D are taken as the input to
generate Y with O2VNet. Both networks use a conditional GAN
structure [42].

4.1 S2ONet

We apply WGAN-GP [43] for the dense 2D orientation field
generation. For this task, the input of the network is a 2D tensor
with a size of 128×128, including 3 feature channels: 2 channels
of oriented sketch map and 1 channel of binary mask map.
Specifically, the sketch orientation map uses R and G channels
in RGB to represent a 2D direction vector (x, y) (per stroke point
and linear mapped from values of [-1,1] to values of [0, 255]).
The output is also a 2D tensor including 2 feature channels, which
represents 2D direction vectors (x, y) of the dense 2D orientation
field Λ.

Network Architecture. Fig. 3 describes the generator and the
discriminator of our GAN network. We use an encoder-decoder
structure in the network similar to approaches for generating high-
resolution images with low-resolution inputs [44], [45]. Like [44],
our generator consists of residual blocks, upsampling blocks, and
downsampling blocks. We also connect the encoder and decoder
with residual blocks.

Since our target dense 2D orientation fields are more unified
and simpler than colorful pictures, to avoid overfitting, we simplify
the network in [44] by reducing half number of filters in all
convolutional layers. In addition, our discriminator is composed of
five convolutional layers and one linear layer, all without dropout,
and takes the corresponding sketch and mask maps as conditional
inputs. Specifically, we concatenate the generated fake results or
real target with the input sketch and mask images as condition to
generate a 2D input tensor with a size of 128× 128× 5.

Loss Function. With a sketch image IS and a mask im-
age IM as input, we want that our S2ONet generator’s result
Λ = Gs(IS , IM) gets close to the target Λ̃. Previous works on
conditional image generation show the benefit of the feature loss,
which is defined as the L2 difference in a feature space extracted
from a middle layer of a pre-trained network [44]. However, most
of pre-trained networks work on classification or segmentation of
photographs while our target images are orientation maps, which
are very different from photographs.

Instead of using the traditional adversarial loss and feature loss
[19] for the generator, which cannot fully describe the differences
between the real and fake distributions, we adopt a similar idea
in [9], [46] to use a combination of content loss and style loss for
our task. Our S2ONet generator loss is defined as:

LGs = α
∑
l∈m

Lcontent(l) + β
∑
l∈n

Lstyle(l). (1)

Here, the first term is the content loss and the second one is the
style loss. l denotes the layer index. We set α = 0.01 and β = 5.
We select the middle layers m = {0, 2} of the discriminator to
compute the content loss and middle layers n = {0, 1, 2, 3, 4} to
compute the style loss.

Lcontent(l) =
1

2

∑
i,j

[Fl,i,j(Λ, IS , IM)− Fl,i,j(Λ̃, IS , IM)]2.

(2)
In Eq. (2), Fl,i,j represents the discriminator features of the ith

filter at position j in the discriminator layer l. Note that if l = 0,
we set Lcontent(0) =

1
2 [Λ− Λ̃]2, which means the per-pixel loss

between generated results and the ground truth. Based on [46], we
define our style loss as follows:

Lstyle(l) =
1

4N2
l M

2
l

∑
i,j

[Al,i,j(Λ, IS , IM)

−Al,i,j(Λ̃, IS , IM)]2.

(3)

In Eq. (3), Al is the Gram matrices, where Al,i,j is the inner
product between the vectorized feature maps i and j in the lth

layer: Al,i,j =
∑

k Fl,i,kFl,j,k. Nl is the number of feature
channels and Ml is the total size of feature tensors.

The loss of the discriminator is defined as:

LDs
= Ds(Λ̃, IS , IM)−Ds(Λ, IS , IM) + λLgp, (4)

where
Lgp = (‖∇Λ̂Ds(Λ̂, IS , IM)‖

2
− 1)2. (5)

Ds(X) represents the S2ONet discriminator. Lgp is the gradient
penalty for the random sample Λ̂ proposed in [43], where Λ̂ =
εΛ̃ + (1 − ε)Λ, and ε is a random number ε ∼ [0, 1]. The value
of λ is set to 10.

4.2 O2VNet
After S2ONet, we get a dense 2D orientation field and our
O2VNet is designed to predict a voxel-represented 3D orientation
field from this 2D input using a GAN structure. Previous works
showed that the GAN with 3D convolutional layers does well
in generating voxels [47] and has been adopted by Zhang and
Zheng [9] for image-based hair modeling. In our case, the input
of O2VNet generator is a 2D tensor with a size of 128× 128× 3,
including a 2D orientation field Λ and a 2.5D bust depth image D.
The output is a 3D tensor Y of size 128 x 128 x 96, representing
a 3D orientation field.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 5

3 16

M
ax

Po
ol

in
g

32 64

M
ax

Po
ol

in
g

128

128

128 128

128

128

128

128

128

96

96

96

16

M
ax

Po
ol

in
g

32

M
ax

Po
ol

in
g

64 32 16 316C

C

C

C

C

C

C

C C

2D Convolution 3D Convolution

Input Convolution
Residual block Generated result

ConcatenateC

Skip Connection Tile & Connection
Add

Fig. 4: Architecture of our O2VNet generator, which takes the
input {Λ,D} with the shape of 128 × 128 × 3. The encoder of
2D convolutional part takes three residual blocks with (16, 32, 64)
output channels combing with two max pooling layers for down-
sampling, followed by three decoders, each of which contains
one residual block and three deconvolutional layers all with 128
output channels for upsampling. The outputs of three decoders
are concatenated and reshaped to a 3D tensor with the size of
128×128×96×3. The 3D convolutional part resembles a 3D U-
Net structure, which includes an encoder with two downsampling
modules with (32, 64) output channels and a decoder with two
upsampling modules with (32, 16) output channels. The skip
connection and our tile & connection are described in different
colors (black and red), respectively.

Network Architecture. As shown in Fig. 4, the generator of
O2VNet is constituted of two main modules: a 2D convolutional
module and a 3D convolutional module, each with an encoder-
decoder structure based on the commonly used U-Net [48].

The 2D convolutional module (Fig. 4 (Left)) is composed of
an encoder and three decoders of the same shape for predicting
values at different axes X,Y, Z. The output of three decoders are
three 2D tensors of size 128×128×96, which can be concatenated
and reshaped into a 3D tensor of size 128 × 128 × 96 × 3. To
make filters in our encoder have larger receptive fields of input
images and thus learn better occupancy features (see comparisons
in §7.3), we set layers of residual blocks all followed by max-
pooling layers.

Our 3D convolutional module consists of two downsampling
modules with residual blocks and max pooling layers, and two
upsampling modules. We add the 2D feature maps to the 3D
feature maps to ensure that the 2D detail information shall go
through the whole network. To to this, we tile 2D feature maps
to the size of 3D feature maps before performing the feature
addition. We call this step tile connection. We share the same
discriminator architecture with [9] which consists of 5 layers of
3D convolutional layers.

Our architecture differs from HairGAN [9] in the following
aspects. First, we use the U-Net structure for both the 2D convolu-
tion and 3D convolution to ensure that the high-frequency features
can flow through the network whereas HairGAN only exploits
downsampling modules without skip connection. Second, we use
tile connection to let the details further flow from the 2D module
to the 3D module. Two two steps ensures that the details originally
in the 2D orientation maps are preserved in the results (see §7.3).
Third, our 3D convolutional module has more 3D convolutional
layers than the simple 3D convolutional layers used in [9] and
thus merits better model capacity.

Loss Function. Like S2ONet, O2VNet applies WGAN-GP
to speed up the convergence and defines the generator loss as a
combination of the content loss and the style loss. In addition, we
hope that the projection of the generated 3D orientation field from
the input view is as similar as possible to the 2D orientation field to
synthesize user-desired hair strands. Thus, we add the projection
loss to O2VNet:

Lproj =
∑
i∈IΘ

(Proj(Y)i − Λi)
2. (6)

Here, IΘ represents the 2D region where the 2D orientation field
has valid values in the 2D image and Proj(Y) is projected 2D
region of the 3D orientation field Y (from visible voxels). The
projection part in our approach differs from existing works, which
commonly use a differentiable projection layer for end-to-end
training [49]. In our case, the camera view of projection is fixed
in the training step, and the cross section of the generated voxel
shares the same solution as the input 2D orientation field (both
are of the size 128× 128). Hence our projection matrix P can be
fixed. Let Y ′ denote the projected 3D orientation field P (Y). We
store the indices of the visible voxels of Y ′ in advance using its
ground truth Ỹ , and use the indices to directly compute the values
of Proj(Y). In particular, we simply use the normalized x and y
parts of Y ′ while ignoring the z part.

In our experiments, we find that adding the projection loss
could only constrain the voxels in the visible area. To diffuse
the constraints to the whole 3D orientation volume, we add the
following Laplacian loss:

Llap =
∑
i

(∆(Yi)−∆(Ỹi))
2, (7)

with

∆(Yi) =
∑
j∈Ni

1

|Ni|
(vj − vi). (8)

Our Laplacian loss represents the difference of the divergence of
the gradient between the generated 3D orientation field and the
ground truth Ỹ . ∆(X) is the Laplace operator and i in Eq. 7
represents each voxel in the 3D orientation field. In Eq. 8, Ni is
the index set of the neighbors of the voxel Yi, and vi, and vj are
the values of the voxels Yi and Yj , respectively.

Our final generator loss is defined as:

LGd
=ιLcontent + κLstyle + γLproj + εLlap. (9)

In our experiments, ι = 0.01, κ = 5, γ = 0.1, and ε = 2e − 5.
Note we do not normalize each loss.

4.3 Data Generation

To train our networks, we prepared a hair dataset, which is partly
from public online repositories [8] and partly provided by [29].
We collected totally 653 3D strand-level models, and aligned each
hair model to a unified bust model within a volumetric bounding
box. We fixed the camera at the front of the box and placed a
view-orthogonal sketch plane in the middle of the box.

For our single-view modeling, we project each pair of hair
and bust models to the front view to generate the rendering of the
corresponding ground-truth 2D orientation map, mask map, and
bust depth map. We randomly rotate the hair-strand model and
bust model together around the box center to augment the training
dataset. The rotation ranges from +30o to −30o for the Y axis

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 6

Fig. 5: From left to right: the sketch map generated by rendering
randomly selected hair strands, the corresponding ground-truth 2D
orientation map, and the sketch map generated with our image
tracing method. The rendered result (Left) may include orientation
information from invisible hair strands, and does not match with
the GT 2D orientation map well. In additional, a random selection
may lead to non-uniform distribution.

and +15o to −15o for both the X and Z axes. X, Y, and Z are the
world coordinate axes. We describe some details in the followings.

2D Hair Maps. To generate dense 2D orientation maps, we
render hair strands into images with every vertex’s color of strand
representing its tangent direction. We use OpenGL depth test to
avoid rendering of invisible strands. Similarly, we generate hair
mask maps by replacing every strand vertex’s color in rendered
orientation maps by white. To generate the depth map of the bust
model, we cast a ray parallel to the Z axis, assuming the ray
intersects the bust in p and the z-component value of p is pz . We
define bmin as the box minimum point whose depth value bzmin

is the minimum among all box points. The box maximum point
bmax and its depth value bzmax are similarly defined. Then the
normalized depth of the current ray intersection is calculated as
pz−bzmin

bzmax−bzmin
. Finally, we get the dense orientation map Λ, the mask

map IM , and the bust depth map D. All of the hair maps have the
resolution of 128× 128 in our implementation. Unlike [9], which
uses a high resolution image (1024 × 1024) and then performs
downsampling to 128 × 128, we use a direct 128 × 128 input
for two reasons. On one hand, such a resolution is in conjunction
with the fused 3D volume and in our experiments we find it to be
sufficiently informative to synthesize vivid 3D orientation fields
for hair synthesis (see comparisons to [9] in §7); On the other
hand, synthesizing high resolution images with high quality is
known to be difficult for a GAN model such as our S2ONet [50].

2D Sketch Map. A direct way to generate a sparse sketch
map for training S2ONet is to randomly sample hair strands from
an entire hair model. However, one might note that the dense
2D orientation map we wish to synthesize only depicts the hair
orientation of visible strands. Sampling from invisible hair strands
could lead to ambiguities in the input, as shown in Fig. 5 (Left). To
avoid such ambiguities, we generate the sketch map by tracing the
dense 2D orientation map. Specifically, we first randomly select a
seed pixel on the dense orientation map, and trace from this seed
pixel by iteratively finding the next pixel among eight neighboring
pixels with the smallest color discrepancy. Supposing the current
pixel value is p(x, y) (representing the projected strand orientation
at this position) and the value for one of its neighbors is pn(x, y),
we mark pn as a candidate pixel if the dot product between p(x, y)
and pn(x, y) is below a given threshold (� = 0.5 in our case).
After checking all eight neighboring pixels of the selected pixel,
we choose the most matching pixel among the candidate pixels
as the next iterative pixel by finding the minimum dot product. If
there is no candidate pixel, we terminate the tracing process and

C C

C

3 16

M
ax

Po
ol

in
g

32 64

M
ax

Po
ol

in
g

16

M
ax

Po
ol

in
g

32

M
ax

Po
ol

in
g

64 32 16 3163

Input Convolution
Residual block
Generated result

Concatenate

Skip Connection
Tile & Connection

Add

2D Convolution

3D Convolution

64 64

Fig. 6: The generator architecture of our V2VNet. The structures
of 2D and 3D convolution are similar to that of O2VNet.

randomly re-select a new seed pixel for the next tracing process.
Finally, we get the sketch map IS (Fig. 5 (Right)) through multiple
iterations. To ensure uniform sampling, we employ an adaptive
clustering strategy as in [51] and then select one strand in each
cluster.

3D Hair Orientation Field. As in [9], we convert hair strands
to a 3D orientation field Y . We define a grid volume with the
size of 128 × 128 × 96. Every grid cell stores a value which is
the average tangent direction of hair strands that pass through this
grid cell.

5 MULTI-VIEW HAIR MODELING

In our system we allow users to draw a new sketch or mask
to adjust the hair model in either the current view or a novel
view. This is fully supported by our multi-view hair modeling
module. This module takes as input the 3D orientation field
Y (after rotation), the bust depth map (after rotation), and the
newly specified sketch and hair mask. We first generate a dense
2D orientation field Λ∗ from the new sketch and mask images
using S2ONet. The system then outputs a new 3D orientation
field Y∗. In this process, we hope that our network only changes
the 3D orientation field in the new view with respect to the
new sketch, while it can keep the original values in the other
areas. Existing works on multi-view modeling like [38] simply
concatenate 3D volume with 2D feature maps and feed them to
a network only using 2D convolutional layers. However, through
preliminary experiments, we find this structure performs badly for
our task (§7). Other efforts [52], [53], [54] working on multi-view
modeling encode and aggregate features from different views for
3D reconstruction, which is not suitable for our task of continuous
updating of a 3D orientation field. We thus design a volume-
to-volume network structure guided by 2D feature maps, named
V2VNet.

5.1 V2VNet Architecture and Loss Function
The V2VNet architecture is similar to the 3D convolutional module
in O2VNet, and is based on the V2V-PoseNet [55]. It takes a
rotated 3D orientation field R(Y) where Y is the orientation
field in the previous view, a 2D orientation map Λ∗ and a bust
depth image D∗ as input and generates an updated 3D orientation
field Y∗. As shown in Fig. 6, V2VNet has two modules. The

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 7

V2VNet

Generated 3D Orientation Field Ground Truth

Rotation

R
an

do
m

 C
ro

p

Or

As
 C

on
st

ra
in

t

H
ai

r S
yn

th
es

is
H

ai
r S

yn
th

es
is

R
an

do
m

 C
ro

p

Generated 3D Orientation Field

Rotation

R
an

do
m

 C
ro

p

OrOr

R
an

do
m

 C
ro

p

Fig. 7: Training data generation for V2VNet. Left: we use the
generated 3D orientation field Y from O2VNet to synthesize hair
strands. Middle: The rotated 3D hair model is then used for
generating the rotated 3D orientation field Y∗ as the training input
for V2VNet. The middle bottom shows randomly cropped Y∗. Our
V2VNet takes Y∗ or its cropped version as the input, and uses the
2D orientation map and bust depth map generated from the paired
ground truth (Right) as constraints.

2D convolutional part takes a new 2D orientation map Λ∗ and
a new bust depth image D∗ as input and applies 2D convolutional
layers with 3 residual blocks and 2 downsampling layers to extract
2D feature maps for guiding the volume-to-volume generation.
The 3D convolutional part uses a U-Net structure, with both the
encoder and the decoder consisting of residual blocks. Unlike
the 3D convolutional sub-network in the O2VNet, we add more
residual blocks in our V2VNet because this task is to modify the
input 3D orientation field.

Loss Function. V2VNet is also based on WGAN-GP, and has
the same discriminator as before. Meanwhile, for the generator
of V2VNet, we add a loss to help the network keep the original
features of the pre-generated 3D orientation fields:

Lori =
∑
i∈Γ

(Y∗
i −R(Y)i)

2. (10)

Here, Γ represents the invisible hair voxels in the 3D orientation
field from the current view. Similar to IΘ1

and IΘ2
, we can

initialize an index set of such invisible voxels in advance. The
full loss of the V2VNet generator is defined as:

LGv =ιLcontent + κLstyle + γLproj

+ εLlap + ζLori.
(11)

Here the values of weight parameters ι, κ, γ, ε are same as those
used in Eq. 9 and we set ζ = 0.1.

5.2 Data Preparation
To train V2VNet, we require paired data ((Y∗,D∗,Λ∗),Y†).
Here, D∗, Λ∗, and Y∗ are the bust depth map, 2D orientation map,
and 3D orientation field in the current view, and Y† is an update
of Y∗ matching the 2D orientation map Λ∗. We can obtain D∗,
Λ∗, and Y† from the ground truth in the current view. However,
Y∗ should denote a 3D orientation field generated in the previous
view.

Profiting from our single-view hair modeling, the synthesized
3D orientation fields from our O2VNet is a natural fit for Y∗.
However, since simply rotating discrete grids over a continuous
space would result in aliasing, we use synthesized hair strands as
an intermediate representation.

[Zhang and Zheng 2019] Ours

Fig. 8: Comparison of our hair growing algorithm to that by Zhang
and Zheng [9] given the same 3D orientation field.

As illustrated in Fig. 7, we first use our 2D orientation
map in the front view and pre-train O2VNet to generate a 3D
orientation field Y . We then synthesize the hair strands using the
3D orientation field Y (see §5.3). The hair strands are rotated and
used to calculate the new 3D orientation field Y∗. Finally, we
randomly crop some parts of Y∗ from the current view to make it
have a different silhouette from the input mask. In total, there are
5,000 and 50 samples for training and validation, respectively.

5.3 Hair Synthesis

In Section 4.3, we introduce how to convert strand-level models
to voxel-level models. We now introduce the method that converts
voxel-level models to strand-level models. As mentioned above,
we get a 3D orientation field from the output of either O2VNet or
V2VNet with every grid cell storing a value, which is the average
tangent direction of hair strands that pass through this cell.

Our hair growing algorithm is similar to that of [4] and [9].
We do some modifications to reduce the influence of noisy grids.
First, we start from the scalp and grow hair strands from the root
positions as in [4]. A strand will continue to grow along the grid
cell direction to reach its next grid cell unless the next grid cell is
out-of-volume or the angle difference between its direction d and
the previous direction d̄ is larger than a threshold θ. Unlike [4]
and [9], which stop the growing with a small value of θ, we set θ
to 150o. More importantly, in case when θ larger than 60o, we set
the new growing direction to be the mean direction between d and
d̄ to ensure smoothness.

The above process gives us a set of “good” hair strands,
denoted as Sg . We then randomly select seed grid cells inside
the hair volume which have not been passed by Sg and whose
value is valid (a grid value (x, y, z) is considered to be valid if
(x× x+ y × y + z × z) ≥ 0.5). Then we perform the growing
algorithm as in [9]. This process might result in candidate hair
strands Sc that may not connect to hair roots. To address this
issue, for each strand si ∈ Sc we try to find the most similar
strand sj from Sg , with the similarity between si and sj measured
in terms of their curvature. If more than 1/3 of the continuous
strand vertices of si whose curvature matches with that of sj , we
set sj as the guiding hair strand for si and continue growing si

using the direction of sj and finally connect it to the neighboring
roots of sj if available. Fig. 8 shows a comparison of our hair
growing algorithm to that of [9]. Note that our hair strands are
more continuous and venerable in noise regions.

6 USER INTERFACE

Our system allows a user to design 3D hairstyles with or without a
reference. A hairstyle can be created from scratch. In this case, the
user can directly draw strokes and hair mask atop a 3D bust model

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 8

Load image User edits Modeling result

Fig. 9: The user interface. The user can load an existing portrait
image as a reference or s/he can start from scratch as shown in
Fig. 1. The hair masks and orientation maps can be automatically
computed from the images by the method of [29].

(a) (b)

Fig. 10: Auxiliary tools ((a) cut and (b) local deform) supported
in our system.

(initially in the front view). Then the user-specified sketch map and
the mask map are sent to our networks to produce a 3D orientation
field for hair synthesis. Alternatively, we allow the user to import
a portrait image to depict a desired hairstyle (Fig. 9). In this case,
our system automatically aligns the image to the bust model by
using the face alignment algorithm proposed by Cao et al. [56] and
segment the hair mask map by the method in [29]. The orientation
map is also automatically extracted from the input image using
the method described in [9] and the bust depth map is computed
from the fitted bust model. In case when the user draws orientation
strokes, we apply our S2ONet to generate the 2D orientation map
instead. The generated maps are then fed into our networks to
produce a 3D orientation field. Such referencing images can be
used in other views as well. For multi-view modeling, the user
performs the same set of operations to specify the new hair mask
and strand orientations.

6.1 Hair Strand Editing
We propose some strand-level hair model editing tools for users
to do simple hairstyle modifications. The supported tools include
hair cutting, reshaping, lengthening(by scaling), color changing,
and texturing. Below we give the details on strand cutting and
reshaping.

Strand Cutting. As illustrated in Fig. 10 (a), this tool is used
to cut the hair and trim the boundary of a hair strand model. The
user can directly cut 3D hair strands by 2D strokes. We identify
hair strands which intersect with the user-specified strokes, and
discard the strands’ portion which is not connected to the root.
Alternatively, the user can adjust the hair strand model by editing

Index a b c d e f g

views 1 1 2 2 2 2 1

strokes 0 0 0, 3 0, 3 0, 3 0, 3 10

Index h i j k l m n

views 1 2 2 3 2 2 2

strokes 5 6, 3 5, 2 7, 3, 2 3, 0 4, 2 5, 2

TABLE 1: Statistics of interaction for results shown in Fig. 11.
The stroke numbers are in accordance with the number of views.

the 2D hair mask. Our system monitors the 2D contour of the
hair strand model and computes the new hair mask, which is
then mapped to the 3D hair volume. Then we discard hair strand
vertices which are outside the modified hair volume. Note when
the user enlarges the hair volume by re-sketching the hair mask
(i.e., not a cutting operation), we need O2VNet and V2VNet to
update the 3D orientation field.

Strand Reshaping. As illustrated in Fig. 10 (b), this tool is
used to deform a wisp of hair strands. Our interface allows the user
to choose a wisp of hair strands in two ways. First, since a wisp of
hair strand must grow from adjacent hair roots, the user can pitch
on the scalp area and all hair strands whose roots are in the selected
area will be selected. In the other way, the user can select a wisp
of hair strands by drawing a strand sketch on the sketch plane
and our system then selects hair strands whose projected shape
matches the strand sketch by measuring the vertex curvatures. The
selected wisp of hair strands can be deformed simply by moving
the selected strand vertices and the rest of the strand vertices are
updated using a method based on Laplacian editing [57].

7 EXPERIMENTAL RESULTS

Our system is implemented using QT 5.12 and OpenGL. Our
three networks (S2ONet, O2VNet, and V2VNet) are implemented
using the TensorFlow framework and trained with 4 GeForce GTX
1080Ti GPUs. It took 100 epochs for S2ONet and 200 epochs for
the other networks all with a batch size of 8 for training. Note that,
for the first 100 epochs of O2VNet and V2VNet training, we do
not use the projection loss or Laplacian loss. This training strategy
makes the training converge faster. The whole training process
took about one week. In the runtime, all of our experimental
tests are conducted on a PC with an Intel(R) Core(TM) i7-
8770 3.20GHz CPU and 16GB memory. Meanwhile, our system
needs only one GPU for the feedforward propagation of the three
networks.

7.1 Performance
Since our target is to model high quality 3D hairstyles with
2D sketches, the performance of our DeepSketchHair system is
recorded in the following two aspects.

Qualitative Results. We have evaluated the performance of
our DeepSketchHair system on some Internet portrait images and
cartoon images, for which it is challenging for frontier image-
based hair modeling methods to deal with. Note that, our system
can generate 3D hair models from portrait images automatically
by first using the method in [29] to generate hair mask images
and dense 2D orientation maps. Meanwhile, users are allowed to
perform freeform edits atop the creation. The hairstyles in all these
cases are of various shapes and details. Some of the results are
shown in Fig. 11, and 12. In Fig. 11, some of the examples are not

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 9

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l) (m) (n)

Fig. 11: A gallery of modeling results of 3D hairstyles from different inputs. Hairstyles in (a) and (b) are modeled from single images
automatically. From left to right in (c) to (j), we show the reference images, the generated results, results in a different view, and the
results after further edits by multi-view modeling (for g and h, no further edits were performed). The hairstyles created from scratch
are shown in (k), (l), (m) and (n). The input sketches if any are overlaid with the reference images.

taken in frontal view (e.g., (d), (f), and (h)), some of them are of
low resolution (e.g., (h)) while some of them are in cartoon format
in which the hairstyles are dramatically different from real hairs
((g) - (j)). All aforementioned issues pose potential challenges for
existing single-view image-based techniques as they either require
frontal view or high-resolution input images, or rely on existing
hair databases [8], [9]. The 3D hair models in the first row of
Fig. 11 are generated automatically while the 3D hairstyles in
the second to fifth rows are obtained after inputting additional
sketches in new views to get more vivid results. The last row shows
examples of freeform hairstyles that are created from scratch. Each
hairstyle took less than 2 minutes to model by a trained user. The
statistics including the number of views and the number of strokes
to produce the associated results are shown in Table 1. Note our
single-view modeling does not require a frontal view to start (e.g.,
Fig. 11, f) since we have training data from distant views (§4.3).

We have the following findings from the qualitative results: 1)
Our DeepSketchHair system can generate state-of-the-art image-
based hairstyles; 2) The generated results are highly realistic, no
matter if the reference images are unreal cartoon pictures or real
portrait images. 3) Our system is capable of generating various

crazy hairstyles such as those in the last row of Fig. 11. All of these
demonstrate the effectiveness and expressiveness of our system.

Robustness to the input sketches and view changes. Fig. 13
shows that our method is insensitive to varying input sketches
depicting similar hairstyles. Even with random, broken, inconsis-
tent, or very sparse sketch inputs, our method can consistently
generate the desired high-quality results. In Fig. 14, we show that
our V2VNet is robust against view changes, thanks to the randomly
synthesized viewpoints in our training dataset.

Pilot Study. We invited five novice users with no 3D modeling
experience and no training with our system. We first let them get
familiar with our user interface and the functions of our system.
Then we supplied them with some reference Internet images and
taught them how to model a hairstyle from one of images using
our system. The training step took about 5 minutes for each
participant. In the evaluation test, the users were asked to do hair
modeling tasks with a set of randomly selected images (3 for each)
and try to do some artistic design. The sketches were created
by using a Wacom touch screen with digital pen interface. We
show some representative generated results and the corresponding
reference images with the input sketches overlaid in Fig. 12. The

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 10

Fig. 12: Representative 3D hairstyles created by 5 novice partici-
pants (reference images and the corresponding sketches are shown
atop).

Regular DenseRandomBrokenSparse

Fig. 13: Robustness of our method against varying input sketches
depicting similar hairstyles.

(a) (b) (c) (d)

Fig. 14: Hair adjustments in random views. The first row shows
sketches on top of initially synthesized hair models and the second
row shows corresponding results.

Step User Drawing S2ONet O2VNet V2VNet Hair Synthesis

Time ≈ 30s ≈ 0.2s ≈ 0.3s ≈ 0.2s ≈ 5s

TABLE 2: Average performance of our various algorithmic com-
ponents in the pilot study.

Input images [Zhang and Zheng 2019] Ours

Input images [Saito et al. 2018] Ours

Fig. 15: Comparisons of our method with single-view image-based
hair modeling methods.

average timing statistics are reported in Table 2. The users could
get a generated 3D hair model in a few seconds when they finished
their drawing and clicked the “build” button. Feedbacks from the
participants were mainly positive but with the main concern that
the response time of a few seconds is a bit long. Some of them
expressed that the sketching interface in 2D is somehow limited
when they wanted to deform and manipulate strands in 3D. Yet
they all expressed our DeepSketchHair system can produce user-
wanted hair models by simple interaction.

7.2 Comparisons

To the best of our knowledge, our method is the first method
that can model high quality 3D hair models from sets of multi-
view sketches. We compare our method with the state-of-the-art
single-view image-based hair modeling methods [8], [9] and some
sketch-based methods [5], [15], [17].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 11

[Wither et al. 2007]

[Fu et al. 2007]

Ours

Ours

Ours[Hu et al. 2015]

Fig. 16: Comparisons of our method with previous sketch-based
hair modeling techniques. In the last two rows, we use the same
set of strokes as in [5].

We have compared our O2VNet with HairGAN proposed by
Zhang and Zheng [9]. For fair comparison, we generate the hair
mask and dense 2D orientation map from the input image as in [9]
and feed them into both HairGAN and our O2VNet (note that user
sketches are not used here). Our generated hair strands have higher
quality even without being post-processed (in Zhang and Zheng
[9], tedious post-processing is required for refinement). As shown
in the first two rows of Fig. 15, our hair strands are smoother and
match the input images better.

The method by Saito et al. [8] can produce 3D hair strands
from cartoon images automatically. With simple or no interaction
(shown in Fig. 15), our DeepSketchHair can also generate 3D
hair strands referring to cartoon images. Compared to [8], our
results can fit cartoon hairstyles better with a small amount of user
interaction.

Earlier sketch-based hair modeling methods [15] rely on the
physically-based hair wisp model, which cannot maintain the
balance between reality and user input sketches. As the first row
of Fig. 16 shows, the result of [15] sometimes does not match
the input strokes well, while our result is highly realistic and
respects the input sketch well. We also compare our method
with [17], which requires user-specified 3D curves to constrain
the 3D orientation field by solving a Laplacian system. In the

second row of Fig. 16, the readers can find that our result looks
more reasonable, while the hair strands in their result are twisted
in some degree. What’s more, our method, which uses neural
network forward propagation, is much faster than solving a large
sparse linear system [17].

The recent data-driven sketch-based hair modeling approach
by Hu et al. [5] relies on the reference images and dataset-based
retrieval. This method combines different retrieved hairstyles to
generate the most similar 3D hair model to the reference images.
Thus, their generated hairstyles appear mixed and they cannot
handle well when a target hairstyle matches none of those in the
database like the examples shown in the last two rows of Fig. 16.
Our learning-based method does not have these issues. In addition,
different from [5], our method allows users to modify hairstyles
from different views, so finally, we can generate 3D hair models
with very complete structures. For fair comparisons, our results
shown in Fig. 14 do not use additional sketches in new views.

7.3 Ablation Studies

In this subsection, we introduce the ablation studies to show the
impact of some important algorithmic components in our system.

S2ONet. To test the impact of our S2ONet, we have explored
three alternative structures:

(i) Take the same input of S2ONet, we simply diffuse the stroke
direction to fill the entire hair mask region by solving a Laplace
equation.

(ii) We use randomly selected 2D hair strands as the input
of training without 2D sketch map pre-processing mentioned in
§4.3. This experiment shares the same network structure with
S2ONet and is trained for 100 epochs, too.

The average test errors are reported in Table 3, where all the
methods are compared against the same ground truth. We find that
our full S2ONet achieves the best performance.

(iii) We train our O2VNet with 2D sketches, 2D mask images,
and bust depth images directly to examine the importance of the
intermediate dense 2D orientation map (i.e., not using S2ONet at
all). We call this net S2VNet. The evaluation results are shown in
Fig. 17 (Left). It can be seen that without dense 2D feature maps,
the details of generated 3D orientation fields are far away from the
ground truth, which is consistent with our inference in §4.

O2VNet. We conducted the following experiments to evaluate
our O2VNet.

(i) We first compared our network structure with HairGAN [9].
In this experiment, we train these two networks with the same
dataset and loss function until they converged. The 2nd and 3rd

columns of Fig. 17 show the differences between two network
outputs. The inputs to the two networks are both derived from 3D
hair models in the test set. The readers can find that not only the
errors of our network outputs are lower, but also our synthesized
3D orientation fields are more similar to the ground truth with
higher smoothness. Further, our network converges faster than
HairGAN due to our much smaller input size.

Methods Mean Square Error (MSE)
Laplacian Diffuse 6.98

Random Selection 6.60

S2ONet 4.01

TABLE 3: Ablations study on S2ONet.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 12

0.9984 0.9044 0.7535 0.7467

4.358 4.248 3.805 3.820
w/ sketch w/o Proj. Lap.

 loss
[Zhang et al.
 2019]

Our full Ground truthw/o bust
depth

V2VNetw/o Lap.
loss

0.7541 0.80560.7962

3.8324.7923.902

Fig. 17: Ablations study on O2VNet. The projection and Laplacian losses help our results generalize well to the inputs. The numbers
indicate the MSE errors.

[Delanoy et al. 2018] Ours

Input

Input with sketch

Fig. 18: Ablations study on V2VNet. The method by Delanoy et al.
[38] tends to generate vector fields whose values are inconsistent
with the ones in the previous view and thus are often chaotic (the
middle column). For each method, we show the corresponding
results in the previous and current views.

(ii) We also examined the effects of the projection and Lapla-
cian losses. As shown in Fig. 17, although quantitatively the errors
without both the projection loss and the Laplacian loss (the 3rd

column) are comparable to those with our full model, one can see
visually that the results with the projection and Laplacian losses
have higher curling degree, better matching with the ground truth.
Besides, the results without the Laplacian loss (the 4th column)
get slight improvements over the details, but present more global
errors compared with our full model.

(iii) The 5th column shows that training our network without
the depth as guidance results in a degradation. We also conducted
an experiment to replace our O2VNet with V2VNet. In this regard,
we take the voxelized bust model and the 2D orientation map
as input to our V2VNet to generate a 3D vector field. However,
we find a degeneration in the performance as shown in the 6th

column. This is partially due to that the lack of orientation
guidance as input would prevent the 3D convolutional structure
in the V2VNet to go deeper.

Volume-to-volume Generation. Although Delanoy et al. [38]

present an update CNN dealing with multi-view sketch inputs to
modify 3D surface models, we find this approach does not work
well in our multi-view hair modeling task. We did an experiment
to compare our volume-to-volume network structure with their
method, which concatenates 3D volume with 2D feature maps
and feeds them to a network using 2D convolutional layers only.
In this experiment, we also train these two networks with the same
dataset and the same loss function (we do not add the projection
and laplacian loss). The readers can notice from Fig. 18 that our
network performs much better than the update CNN in [38]: our
method well preserves the features in the previous view and fills
the user-specified empty mask region well.

7.4 Limitations

Our method has several limitations. There still exist complicated
hairstyles that our DeepSketchHair system cannot deal with (Fig.
19). For example, some hairstyles like Afro (Fig. 19 (Bottom))
might have fine hair details which are difficult to handle with our
pre-set resolution of 3D orientation fields. Similar lack-of-fine-
detail effects can also be observed from Fig. 11 (c) and (d). This
is a common drawback of the current deep learning based hair

Fig. 19: Our method might fail to synthesize hair details due to
either insufficient resolution of 2D or 3D orientation fields, or
insufficient training data.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 13

modeling approaches that rely on a vector field representation [8],
[9]. Achieving higher resolutions will bring in tremendous com-
putational cost and need GPUs with bigger memory for training.
In addition, as a learning-based approach, the effectiveness of our
method is also determined by the available training data. Since we
have no hairstyles like polystrip in our dataset, it is difficult for
our network to learn such special shapes (Fig. 19 (Top)).

8 CONCLUSIONS

In this work, we have presented a novel sketching system DeepS-
ketchHair for hair modeling. We showed that a deep learning
based method established on a 3D hairstyle dataset is able to
generate various realistic 3D hair models in accordance with 2D
sketches, in single or multiple views. With a simple sketch or an
image, users can get a corresponding generated 3D hair model
and then optionally perform further manipulations to get desired
results. Our system is composed of three deep learning modules
which are carefully designed to support seamless user interactions.
The experimental results show the outstanding performance of our
modeling system, and demonstrate the effectiveness and expres-
siveness of our proposed method. In our current implementation,
we require users to draw the hair mask in full (even for editing in
new views) and the directed strokes to depict the hair growing
direction. More intelligent interfaces or alternative interactions
(for examples, those in VR) could be investigated to ease the
interactions and to enable more powerful hair editing in 3D.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
constructive comments. This work was supported in part by
the National Key Research & Development Program of China
(2018YFE0100900), NSF China (No. U1609215), and the Fun-
damental Research Funds for the Central Universities. Hongbo Fu
was supported by a gift from Adobe and grants from the RGC
of HKSAR (Project No. CityU 11212119), City University of
Hong Kong (Project No. 7005176), and the Centre for Applied
Computing and Interactive Media (ACIM) of School of Creative
Media, CityU.

REFERENCES

[1] M. Zhang, M. Chai, H. Wu, H. Yang, and K. Zhou, “A data-driven
approach to four-view image-based hair modeling,” ACM Trans. Graph.,
vol. 36, no. 4, pp. 156:1–156:11, 2017.

[2] L. Hu, S. Saito, L. Wei, K. Nagano, J. Seo, J. Fursund, I. Sadeghi, C. Sun,
Y.-C. Chen, and H. Li, “Avatar digitization from a single image for real-
time rendering,” ACM Trans. Graph., vol. 36, no. 6, pp. 195:1–195:14,
2017.

[3] M. Chai, L. Wang, Y. Weng, Y. Yu, B. Guo, and K. Zhou, “Single-view
hair modeling for portrait manipulation,” ACM Trans. Graph., vol. 31,
no. 4, pp. 116:1–116:8, 2012.

[4] M. Chai, L. Wang, Y. Weng, X. Jin, and K. Zhou, “Dynamic hair
manipulation in images and videos,” ACM Trans. Graph., vol. 32, no. 4,
pp. 75:1–75:8, 2013.

[5] L. Hu, C. Ma, L. Luo, and H. Li, “Single-view hair modeling using a
hairstyle database,” ACM Trans. Graph., vol. 34, no. 4, pp. 125:1–125:9,
2015.

[6] M. Zhang, P. Wu, H. Wu, Y. Weng, Y. Zheng, and K. Zhou, “Modeling
hair from an rgb-d camera,” ACM Trans. Graph., vol. 37, no. 6, pp.
205:1–205:10, 2018.

[7] Y. Zhou, L. Hu, J. Xing, W. Chen, H.-W. Kung, X. Tong, and H. Li,
“Hairnet: Single-view hair reconstruction using convolutional neural
networks,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 235–251.

[8] S. Saito, L. Hu, C. Ma, H. Ibayashi, L. Luo, and H. Li, “3d hair synthesis
using volumetric variational autoencoders,” ACM Trans. Graph., vol. 37,
no. 6, pp. 208:1–208:12, 2018.

[9] M. Zhang and Y. Zheng, “Hair-gan: Recovering 3d hair structure from a
single image using generative adversarial networks,” Visual Informatics
2019, vol. 3, no. 2, pp. 102–112, 2019.

[10] Y. Watanabe and Y. Suenaga, “A trigonal prism-based method for hair
image generation,” IEEE Computer Graphics and applications, vol. 12,
no. 1, pp. 47–53, 1992.

[11] T.-Y. Kim and U. Neumann, “Interactive multiresolution hair modeling
and editing,” ACM Trans. Graph., vol. 21, no. 3, pp. 620–629, 2002.

[12] B. Choe and H.-S. Ko, “A statistical wisp model and pseudophysical
approaches for interactive hairstyle generation,” IEEE Transactions on
Visualization and Computer Graphics, vol. 11, no. 2, pp. 160–170, 2005.

[13] X. Mao, S. Isobe, K.-i. Anjyo, and A. Imamiya, “Sketchy hairstyles,” in
International 2005 Computer Graphics, 2005, pp. 142–147.

[14] S. Malik, “A sketching interface for modeling and editing hairstyles,” in
SBM, 2005, pp. 185–194.

[15] J. Wither, F. Bertails, and M.-P. Cani, “Realistic hair from a sketch,”
in IEEE International Conference on Shape Modeling and Applications
2007 (SMI’07), 2007, pp. 33–42.

[16] Y. Yu, “Modeling realistic virtual hairstyles,” in Proceedings Ninth
Pacific Conference on Computer Graphics and Applications. Pacific
Graphics 2001, 2001, pp. 295–304.

[17] H. Fu, Y. Wei, C.-L. Tai, and L. Quan, “Sketching hairstyles,” in Pro-
ceedings of the 4th Eurographics workshop on Sketch-based interfaces
and modeling, 2007, pp. 31–36.

[18] J. Xing, K. Nagano, W. Chen, H. Xu, L.-y. Wei, Y. Zhao, J. Lu, B. Kim,
and H. Li, “Hairbrush for immersive data-driven hair modeling,” in
Proceedings of the 32Nd Annual ACM Symposium on User Interface
Software and Technology. ACM, 2019, pp. 263–279.

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, 2014, pp. 2672–
2680.

[20] K. Ward, F. Bertails, T.-Y. Kim, S. R. Marschner, M.-P. Cani, and M. C.
Lin, “A survey on hair modeling: Styling, simulation, and rendering,”
IEEE transactions on visualization and computer graphics, vol. 13, no. 2,
pp. 213–234, 2007.

[21] Y. Bao and Y. Qi, “A survey of image-based techniques for hair model-
ing,” IEEE Access, vol. 6, pp. 18 670–18 684, 2018.

[22] L.-H. Chen, S. Saeyor, H. Dohi, and M. Ishizuka, “A system of 3d hair
style synthesis based on the wisp model,” The Visual Computer, vol. 15,
no. 4, pp. 159–170, 1999.

[23] X. D. Yang, Z. Xu, J. Yang, and T. Wang, “The cluster hair model,”
Graphical Models, vol. 62, no. 2, pp. 85–103, 2000.

[24] Z. Xu and X. D. Yang, “V-hairstudio: an interactive tool for hair design,”
IEEE Computer Graphics and Applications, vol. 21, no. 3, pp. 36–43,
2001.

[25] K. W. Ming, T. Hiroki, and N. Masayuki, “Generation of 3d hair model
from 2d image using image processing,” in Applications of Digital Image
Processing XIX, vol. 2847, 1996, pp. 303–312.

[26] S. Paris, H. M. Briceño, and F. X. Sillion, “Capture of hair geometry
from multiple images,” ACM Trans. Graph., vol. 23, no. 3, pp. 712–719,
2004.

[27] Y. Wei, E. Ofek, L. Quan, and H.-Y. Shum, “Modeling hair from multiple
views,” ACM Trans. Graph., vol. 24, no. 3, pp. 816–820, 2005.

[28] M. Chai, L. Luo, K. Sunkavalli, N. Carr, S. Hadap, and K. Zhou, “High-
quality hair modeling from a single portrait photo,” ACM Trans. Graph.,
vol. 34, no. 6, pp. 204:1–204:10, 2015.

[29] M. Chai, T. Shao, H. Wu, Y. Weng, and K. Zhou, “Autohair: Fully
automatic hair modeling from a single image,” ACM Trans. Graph.,
vol. 35, no. 4, pp. 116:1–116:12, 2016.

[30] P. K. Diederik, M. Welling et al., “Auto-encoding variational bayes,” in
Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2014.

[31] C. Li, H. Pan, Y. Liu, X. Tong, A. Sheffer, and W. Wang, “Robust flow-
guided neural prediction for sketch-based freeform surface modeling,”
ACM Trans. Graph., vol. 37, no. 6, pp. 238:1–238:12, 2018.

[32] T. Igarashi, T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: a sketching
interface for 3d freeform design,” in Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques, 1999,
pp. 409–416.

[33] Y. Mori and T. Igarashi, “Plushie: An interactive design system for plush
toys,” ACM Trans. Graph., vol. 26, no. 3, 2007.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX. 14

[34] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “Fibermesh: Designing
freeform surfaces with 3d curves,” ACM Trans. Graph., vol. 26, no. 3,
2007.

[35] T. Chen, Z. Zhu, A. Shamir, S.-M. Hu, and D. Cohen-Or, “3-sweep:
Extracting editable objects from a single photo,” ACM Trans. Graph.,
vol. 32, no. 6, pp. 195:1–195:10, 2013.

[36] A. Shtof, A. Agathos, Y. Gingold, A. Shamir, and D. Cohen-Or, “Geose-
mantic snapping for sketch-based modeling,” in Computer graphics
forum, vol. 32, no. 2pt2, 2013, pp. 245–253.

[37] H. Huang, E. Kalogerakis, E. Yumer, and R. Mech, “Shape synthesis
from sketches via procedural models and convolutional networks,” IEEE
transactions on visualization and computer graphics, vol. 23, no. 8, pp.
2003–2013, 2016.

[38] J. Delanoy, M. Aubry, P. Isola, A. A. Efros, and A. Bousseau, “3d
sketching using multi-view deep volumetric prediction,” Proc. ACM
Comput. Graph. Interact. Tech., vol. 1, no. 1, pp. 21:1–21:22, 2018.

[39] Z. Lun, M. Gadelha, E. Kalogerakis, S. Maji, and R. Wang, “3d shape
reconstruction from sketches via multi-view convolutional networks,” in
2017 International Conference on 3D Vision (3DV), 2017.

[40] W. Su, D. Du, X. Yang, S. Zhou, and H. Fu, “Interactive sketch-based
normal map generation with deep neural networks,” Proc. ACM Comput.
Graph. Interact. Tech., vol. 1, no. 1, pp. 22:1–22:17, 2018.

[41] X. Han, C. Gao, and Y. Yu, “Deepsketch2face: A deep learning based
sketching system for 3d face and caricature modeling,” ACM Trans.
Graph., vol. 36, no. 4, pp. 126:1–126:12, 2017.

[42] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” CVPR, 2017.

[43] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” in Advances in Neural Informa-
tion Processing Systems, 2017, pp. 5767–5777.

[44] P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays, “Scribbler: Controlling
deep image synthesis with sketch and color,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5400–5409.

[45] L. Zhang, C. Li, T.-T. Wong, Y. Ji, and C. Liu, “Two-stage sketch
colorization,” ACM Trans. Graph., vol. 37, no. 6, pp. 261:1–261:14,
2018.

[46] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2414–2423.

[47] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum, “Learning
a probabilistic latent space of object shapes via 3d generative-adversarial
modeling,” in Advances in Neural Information Processing Systems, 2016,
pp. 82–90.

[48] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention, 2015, pp.
234–241.

[49] S. Tulsiani, T. Zhou, A. A. Efros, and J. Malik, “Multi-view supervision
for single-view reconstruction via differentiable ray consistency,” CoRR,
vol. abs/1704.06254, 2017.

[50] Q. Chen and V. Koltun, “Photographic image synthesis with cascaded
refinement networks,” in Proceedings of the IEEE International Confer-
ence on Computer Vision, 2017, pp. 1511–1520.

[51] L. Wang, Y. Yu, K. Zhou, and B. Guo, “Example-based hair geometry
synthesis,” ACM Trans. Graph., vol. 28, no. 3, pp. 56:1–56:9, 2009.

[52] A. Kar, C. Häne, and J. Malik, “Learning a multi-view stereo machine,”
in Advances in neural information processing systems, 2017, pp. 365–
376.

[53] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and M. Zoll-
hofer, “Deepvoxels: Learning persistent 3d feature embeddings,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2437–2446.

[54] S. Saito, Z. Huang, R. Natsume, S. Morishima, A. Kanazawa, and H. Li,
“Pifu: Pixel-aligned implicit function for high-resolution clothed human
digitization,” in The IEEE International Conference on Computer Vision
(ICCV), October 2019.

[55] G. Moon, J. Yong Chang, and K. Mu Lee, “V2v-posenet: Voxel-to-voxel
prediction network for accurate 3d hand and human pose estimation from
a single depth map,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 5079–5088.

[56] C. Cao, Q. Hou, and K. Zhou, “Displaced dynamic expression regression
for real-time facial tracking and animation,” ACM Trans. Graph., vol. 33,
no. 4, pp. 43:1–43:10, 2014.

[57] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P.
Seidel, “Laplacian surface editing,” in Proceedings of the 2004 Euro-

graphics/ACM SIGGRAPH Symposium on Geometry Processing, ser.
SGP ’04, 2004, pp. 175–184.

Yuefan Shen is a Ph.D. candidate at the State
Key Lab of CAD&CG, Zhejiang University. He
obtained his B.S. from the School of Software
Engineering at Shandong University. His re-
search interests include image-based modeling
and 3D data processing with deep learning.

Changgeng Zhang is a Master student at the
State Key Lab of CAD&CG, Zhejiang University.
He obtained his B.S. from the School of Com-
puter Science and Technology, Huazhong Uni-
versity of Science and Technology. His research
interests include image-based modeling and 3D
data processing with deep learning.

Hongbo Fu received a BS degree in information
sciences from Peking University, China, in 2002
and a PhD degree in computer science from the
Hong Kong University of Science and Technol-
ogy in 2007. He is a Full Professor at the School
of Creative Media, City University of Hong Kong.
His primary research interests fall in the fields
of computer graphics and human computer in-
teraction. He has served as an Associate Editor
of The Visual Computer, Computers & Graphics,
and Computer Graphics Forum.

Kun Zhou is a Cheung Kong Professor in the
Computer Science Department of Zhejiang Uni-
versity. He received his B.S. degree and Ph.D.
degree in computer science from Zhejiang Uni-
versity in 1997 and 2002, respectively. His re-
search interests are in visual computing, parallel
computing, human computer interaction, and vir-
tual reality. He currently serves on the editorial
advisory boards of ACM Transactions on Graph-
ics and IEEE Spectrum. He is a Fellow of IEEE.

Youyi Zheng is a Researcher at the State Key
Lab of CAD&CG, Zhejiang University. He re-
ceived a BS degree and an MS degree in Math-
ematics, both from Zhejiang University, China, in
2005 and 2007, and a PhD in Computer Science
from the Hong Kong University of Science &
Technology in 2011. His research interests in-
clude geometric modeling, imaging, and human-
computer interaction. He has served as an As-
sociate Editor of The Visual Computer and Fron-
tiers of Computer Science.

