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a b s t r a c t

Various methods for generating realistic images of objects and human faces from freehand sketches
have been explored. However, generating realistic human body images from sketches is still a
challenging problem. It is, first because of the sensitivity to human shapes, second because of the
complexity of human images caused by body shape and pose changes, and third because of the domain
gap between realistic images and freehand sketches. In this work, we present DeepPortraitDrawing,
a deep generative framework for converting roughly drawn sketches to realistic human body images.
To encode complicated body shapes under various poses, we take a local-to-global approach. Locally,
we employ semantic part auto-encoders to construct part-level shape spaces, which are useful for
refining the geometry of an input pre-segmented hand-drawn sketch. Globally, we employ a cascaded
spatial transformer network to refine the structure of body parts by adjusting their spatial locations
and relative proportions. Finally, we use a style-based generator as the global synthesis network for the
sketch-to-image translation task which is modulated by segmentation maps for semantic preservation.
Extensive experiments have shown that given roughly sketched human portraits, our method produces
more realistic images than the state-of-the-art sketch-to-image synthesis techniques.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

Creating realistic human images benefits various applications,
uch as fashion design, movie special effects, and educational
raining. Generating human images from freehand sketches can
e more effective since even non-professional users are familiar
ith such a pen-and-paper paradigm. Sketches can not only
epresent the global structure of a human body but also depict
he local appearance details of the body as well as garments.

Deep generative models, such as generative adversarial net-
orks (GANs) [1] and variational auto-encoders (VAEs) [2], have
ecently made a breakthrough for image generation tasks. Based
n these generative models, many methods [3–6] have been
roposed to generate desired images from input sketches by solv-
ng a general image-to-image translation problem. Some other
ethods have focused on generating specific types of images,

ncluding human faces [7,8], human hairs [9] and foreground
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objects [10]. Such methods can better handle freehand sketches
by incorporating the relevant domain knowledge.

Compared to many other types of images, human body images
have more complicated intrinsic structures and larger shape and
pose variations, making the sketch-based synthesis task difficult
for the following reasons. First, existing public human portrait im-
age datasets [11] only cover a small subset of all possible human
images under various changing conditions of pose, shape, view-
point, and garment. Since the existing sketch-to-image transla-
tion techniques often use pairs of images and their corresponding
edge maps for training, they may fail to generate desired results
when a test sketch is under very different conditions. Second,
hand-drawn sketches, especially those created by users with lit-
tle drawing skills, can hardly describe accurate body geometry
and structure and look very different from edge maps extracted
from the training images (Fig. 1). Simultaneously, style-based
generative models [12,13] conditioned on human poses have
demonstrated impressive performance for controllable human
body image synthesis [14,15], which motivates us to exploit it
with sketch condition.

In this work, we present DeepPortraitDrawing, a novel deep
enerative approach for generating realistic human images from

oarse, rough freehand sketches (Fig. 2). Instead of trying to
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Fig. 1. There are huge gaps between freehand sketches with human images and
he extracted edge maps. The freehand sketches, especially by those with few
rawing skills, might not describe the local geometry or global structure of a
uman body accurately.

ncrease the generalization ability of sketch-to-image algorithms,
ur key idea is to project an input test sketch to part-level shape
paces constructed based on image-based training data. This can
ssist to bridge the gap between the training and test data, and
lso the gap between freehand sketches and realistic images.
his idea makes sense for our task since roughly drawn sketches
o not provide hard constraints for geometric interpretation. By
roperly recombining part-level information in different training
mages we are able to cover a significant portion of all possible
uman images.
To this end, we take a local-to-global approach to encode

omplicated body shapes under various poses. For each semantic
ody part, we employ an auto-encoder to define a part-level
atent shape space by training on part-level edge maps extracted
rom images. Our system takes as input a semantically segmented
ketch, whose individual body parts are projected onto the con-
tructed part-level shape spaces. This results in a geometrically
efined sketch map and a corresponding parsing map (i.e., la-
eled regions). Next, we employ a cascaded spatial transformer
etwork to structurally refine the sketch and parsing maps by
djusting the locations and relative proportions of individual
ody parts. Finally, we use a global sketch conditioned and paring
odulated StyleGAN to produce a photo-realistic human image

rom the transformed maps.
Extensive experiments demonstrate the effectiveness and prac-

icability of our method. We are able to satisfy novice users’
eed for creating visually pleasing human images from hand-
rawn sketches. In our self-collected dataset of freehand sketches,
ur method produces visually more pleasing results with more
ealistic local details, compared to the previous sketch-based
mage generation techniques (Fig. 7). The main contributions of
ur paper can be summarized as follows:
74
• We are the first to deal with roughly drawn human body
sketches and synthesize realistic images accordingly;

• We present a local-to-global deep generative solution to ge-
ometrically and structurally refine an input sketched human
before image synthesis.

• We collect a hand-drawn sketch dataset of human images
(containing 308 segmented sketches), which can facilitate
future research.

2. Related work

2.1. Sketch-to-image generation

Generating desired images from hand-drawn sketches is a
difficult task, since sketches often exhibit different levels of ab-
straction. To address this domain gap, traditional methods take
a retrieval-composition approach, essentially considering sketches
as soft constraints. For example, a pioneering work by Chen
et al. [16] first retrieves images from the Internet using input
sketches with text descriptions, and fuses the retrieved fore-
ground and background images into desired pictures. A similar
idea is used in PhotoSketcher [17]. PoseShop [18] constructs
image scenes with human figures but requires users to provide
2D poses for retrieval. Since such retrieval-based approaches di-
rectly reuse portions of existing images for re-composition, their
performance is highly dependent on the scale of image datasets,
as well as the composition quality.

By using deep learning models, (e.g., conditional GANs [19]),
recent sketch-based image synthesis works adopt a reconstruc-
tion-based approach. Some works [3,20,21] aim at general-purpose
image-to-image translation and can handle sketches as one of
the possible input types. Other works focus on using sketches
as the condition for GANs. For example, Scribbler [4] can con-
trol textures in generated images by grayscale sketches and
colorful strokes. Contextual-GAN [5] updates latent vectors for
input sketches through backpropagation and produces images
by a pre-trained model. SketchyGAN [6] and iSketchNFill [10]
are able to generate multi-class images for diverse sketches by
introducing gated conditions. Gao et al. [22] propose an approach
to produce scene images from sketches, by generating each fore-
ground object instance and the background individually. Later,
Ho et al. [23] propose a coarse-to-fine generation framework
and incorporate human poses to synthesize human body images.
While impressive results were presented in the above works,
these techniques do not generalize well to rough or low-quality
sketches, which have very different characteristics compared
to image edge maps used for training the generative models.
Fig. 2. Pipeline of the proposed projection-transformation-reconstruction approach to generate human body images from freehand sketches. Firstly, individual body
arts of an input sketch are projected onto the underlying part-level manifolds and decoded into a geometrically refined sketch map and a parsing map, based on an
uto-encoder architecture. Secondly, the individual parts of the refined sketch map and the parsing map are transformed via a cascaded spatial transformer network,
o refine the global structure of the human body. Thirdly, the transformed maps are fed into the global synthesis network to generate a new human image and then
he face refinement network to enhance the facial details.
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dditionally, since sketches are largely used as hard constraints
n these techniques, the synthesized images would inherit geo-
etric distortions if they exist in the input sketches (Fig. 7). Yang
t al. [24] transformed input sketches to synthesize human faces
nd improve robustness towards free-hand sketches, but only to a
imited extent. Yang et al. [25] proposed to utilize the latent space
f StyleGAN to generate face images semantically and geometri-
ally consistent with the input sketch. DrawingInStyles [26] also
enerated high-quality face generation by encoding and mapping
he input sketches to a pretrained StyleGAN.

Our approach is inspired by DeepFaceDrawing [8], which takes
projection-reconstruction approach for synthesizing realistic hu-
an face images from sketches. The key idea of DeepFaceDrawing

s to refine the input sketches before synthesizing the final image.
his refinement is achieved by projecting the input sketches to
omponent-level spaces spanned by edge maps of realistic faces.
eepFaceDrawing achieves impressive results even for rough or
ncomplete sketches and can be further extended to face edit-
ng [27]. However, it is limited to the synthesis of frontal faces.
e extend their approach to synthesizing human body images
nder various poses and viewpoints. Our extension explicitly
ses the semantic information in the whole pipeline, and con-
ributes a spatial transformation module, essentially leading to a
rojection-transformation-reconstruction pipeline.

.2. Label-to-image generation

There are many semantic synthesis approaches generating
mages from segmentation label maps. For example, Pix2pix [3]
s a general image-to-image translation framework based on
U-Net [28] generator and a conditional discriminator, based
n which Pix2pixHD [21] enables high-resolution generation
y proposing multi-scale networks and feature matching loss.
hen and Koltun [29] present a cascaded refinement network
nd use multi-layer perceptual losses to achieve photographic
mages from segmentation maps. GauGAN [30] introduces the
PADE layer to control image styles directly by semantic seg-
entation. Zhu et al. [31] present a semantically multi-modal
ynthesis model to generate images with diverse styles for each
emantic label. LGGAN [32] combines local class-specific sub-
enerators and a global image-level generator for semantic scene
eneration. DAGAN [33] present two novel attention modules
o capture spatial-wise and channel-wise attention individually.
ollageGAN [34] refined results of a base generator based on a
egmentation map with multiple class-specific models. Diffusion
odels [35] have also shown great potential for the image-to-

mage task by conditioning the denoising process on an input
mage [36,37]. Although segmentation labels can be used to
enerate plausible images, they are less expressive than sketches
n describing local details and geometric textures of user-desired
mages. (e.g., collars and sleeves in Fig. 7)

.3. Human body image generation

Human-body image synthesis is challenging in that the human
isual system is sensitive to human shapes, so it is necessary to
ake the global body structure reasonable and produce realistic

ocal textures. Most researchers have focused on the pose-guided
erson image synthesis [38,39], which transfers the same per-
on’s appearance from a source image in target poses. To achieve
his, some methods utilize component masks [40,41], human
arsing [42–44], or correspondence flows [45–47] to transform
ocal source features into target areas, thus preserving the appear-
nce of the same person in target poses. Several methods [48–51]
xtract a surface texture map from a source human body image

nd then synthesize a target human image with it using neural c
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rendering or generative models. Besides pose, other approaches
synthesize human images with different controls. For example,
FashionGAN [52] encodes the shape, appearance, and text, al-
lowing to edit of garment textures of human images through
text descriptions. Ak et al. [53] and Men et al. [44] use attribute
vectors to represent appearance information and then control
the clothes and textures of human images via such attribute
vectors. Dong et al. [54] leverage a parsing map as guidance and
introduce an attention normalization layer to edit human images
by sketches and colors. Many researchers have also attempted to
address the virtual try-on problem [55,56], i.e., dressing a source
person with given clothes through proper geometric transfor-
mations. However, both pose-guided and controllable methods
cannot generate a brand-new human image from scratch in that
the former is constrained by the textures from source images
and the latter only supports attribute editing, while we focus on
generating body textures and garments according to hand-drawn
sketches.

More recently, several research proposed synthesizing human
body images with a style-based [12,13] generator for its ability
to generate high-quality images. InsetGAN [57] produces human
portraits by inserting generated body parts onto a global canvas.
Other works investigated pose-conditioned StyleGAN for syn-
thesizing human body images [14,15] or virtual on [58]. These
methods replace the constant low-dim tensor with pose features
and modulate in 1D or 2D with textures to control both shape
and appearance in StyleGAN. Inspired by them, we also employ
StyleGAN as our generation module, but with sketch features as
condition and parsing map modulation.

3. Method

We propose a projection-transformation-reconstruction approach
or generating realistic human body images from freehand
ketches. As illustrated in Fig. 2, it is achieved through three
odules operated in sequence: a geometry refinement module,
structure refinement module, and an image generation module.
he geometry refinement module takes a semantically segmented
ketch as input and refines the geometry of its individual body
arts by retrieving and interpolating the exemplar body parts in
he latent spaces of the learned part-level auto-encoders. This
odule results in a refined sketch map and a corresponding
arsing map. The structure refinement module spatially trans-
orms the sketch and parsing maps to better connect and shape
ndividual parts, and refine the relative proportions of body parts.
inally, the image generation module translates the transformed
aps into a realistic human body image.

.1. Geometry refinement module

This module aims to refine an input freehand sketch by using
uman portrait images to train several part-level networks. This
as two advantages. First, locally pushing the input sketch to-
ards the training edge maps, and second reducing the geometric
rrors in the input sketch. This assists the image generation
odule in generating more realistic images.
Due to the complexity of human images, it is very unlikely

o find in our training dataset an image that is globally similar
o an input sketch (Fig. 7). On the other hand, it is much easier
o retrieve similar body parts and learn a component-level shape
pace for each body part. We thus follow the idea in DeepFace-
rawing [8] to perform manifold projection at the component
evel.

DeepFaceDrawing has focused on the synthesis of frontal faces
nd relies on a shadow interface to guide users to sketch face

omponents that are well aligned with the training examples.
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his alignment is critical for synthesizing realistic faces with
eepFaceDrawing. In contrast, we aim to handle portrait images
nder various poses and viewpoints. Hence, we cannot use a
ingle layout template for body components. Instead, we propose
o use the semantic segmentation information through the entire
ipeline, since semantic labels provide a natural way to establish
orresponding body parts in different images.
Let S denote a test sketch or a training edge map. We assume

hat S has been semantically segmented into C = 8 parts, in-
cluding hair, face, top-clothes, bottom-clothes, left and right arms,
left and right legs. We denote the part sketches as {Sc}c=1,...,C .
ach body part Sc is cropped by a corresponding bounding box
Sc will be a white image if part-c is absent from S). We use
n auto-encoder architecture to extract a feature vector for each
ody part to facilitate the subsequent manifold projection task, as
llustrated in Fig. 2.

In the testing stage, given a semantically segmented sketch
enoted as {Sc}c=1,...,C , we project its body parts to the underlying
art-level manifolds for geometric refinement. We adopt the Lo-
ally Linear Embedding (LLE) algorithm [59] to perform manifold
rojection without explicitly constructing each part-level mani-
old. Specifically, each part sketch Sc is first encoded into a latent
ector vc by a corresponding encoder Ec . Based on the local linear
ssumption, we use a retrieve-and-interpolate approach. In more
etail, we first retrieve K nearest neighbors {vc

k}k=1,...,K for vc in
the latent space {vc

i } for part c using the Euclidean distance. {vc
i }

collected from a set of training images can be considered as the
samples that build the underlying part-level manifold for part c .
We then interpolate the retrieved neighbors to approximate vc

by minimizing the mean squared error as follows:

min ∥vc
−

K∑
k=1

wc
k · vc

k∥
2
2, s.t.

K∑
k=1

wc
k = 1, (1)

where K = 10 in our experiments and wc
k is the unknown weight

of the kth vector candidate. For each body part, {wc
k} can be found

ndependently by solving a constrained least-squares problem.
fter the weights {wc

k} are found, we can calculate the projected
vector v̇c by linear interpolation:

v̇c
=

K∑
k=1

wc
k · vc

k . (2)

Next, the sketch decoder Dc
S and the mask decoder Dc

M for
part c process the projected vector v̇c , resulting in a refined part
sketch Ṡc and a part mask Ṁc , respectively. Finally, all projected
part sketches {Ṡc} and masks {Ṁc

} are combined together to
recover the global body shape, resulting in a geometry-refined
sketch map Ṡ and a human parsing map Ṁ .

In the training stage, we first train the encoder Ec and the
sketch decoder Dc

S to avoid the distraction from the mask branch.
Since Ec and Dc

S need to reconstruct the input Sc with con-
sistent shapes and fine details, we employ the L2 distance as
the reconstruction loss to train them. Then, we fix the weights
of the parameters in Ec and train the mask decoder Dc

M . We
use the cross-entropy loss for this training since it is a binary
segmentation task.

3.2. Structure refinement module

The geometry refinement module focuses only on the re-
finement of the geometry of individual body parts in a sketch.
However, relative positions and proportions between body parts
in a hand-drawn sketch might not be accurate. We thus employ
the structure refinement module to refine the relative positions
and proportions of body parts to get a globally more consistent

body image.

76
Fig. 3. Illustration of the structure refinement module. The keypoints of indi-
vidual body parts (e.g., the arms and shoulders) are better connected and their
relative length is globally more consistent after this step.

To refine the body structure, we use the pose keypoints (see
Fig. 3), which provide a simple and effective way to represent a
human body structure. According to the physiological characteris-
tics of human beings, the positions of pose keypoints should obey
two rules. First, a joint of a body part should connect to the same
joint of its neighboring body part. Second, the relative length of
different body parts should be globally consistent. Therefore, we
aim to transform the keypoints of different body parts and make
them conform to these rules.

As illustrated in Fig. 3, we first utilize a pose estimation net-
work P to predict heatmaps Hc for the position of each keypoints
from each refined part sketch map Ṡc . Note that we need to pre-
dict the same joint repeatedly for neighboring body parts. Then,
we leverage all the part heatmaps {Hc

} as guidance to recover the
lobal structure of the sketched human body. The different body
arts should preserve proper relative lengths, and connect with
ach other based on the inherent relationships among them. To
chieve this, we apply affine transformations to the body parts
redicted by a spatial transformer network [60] T , so that the
art heatmaps {Hc

} are transformed to reasonable locations {H̃c
}

earned from real human poses. We apply the same predicted
ffine transformations to the refined part sketch maps {Ṡc} and
he part mask maps {Ṁc

}, resulting in {S̃c} and {M̃c
}, respectively.

Since neighboring body parts may influence each other, it is
ery difficult to recover the entire human structure in one step
ransformation. Therefore, we use a cascaded refinement strategy,
mploying a multi-step spatial transformer network to update
he results iteratively. To leverage the global information, we
ombine all the part sketch maps as Ṡ and all the part heatmaps
s H , and then feed Ṡ and H to the spatial transformer network.
he transformed sketch map S̃ and heatmaps H̃ in the jth step
re the input to the transformer network in the (j+1)-th step. In
ur experiments, we used a three-step refinement, as illustrated
n Fig. 4.

To train the pose estimation network P and the cascaded
patial transformer network T , we need to simulate the incon-
istencies of the global structure we may find at the test time.
e apply random affine transformations to all part edge maps

Sc} and part heatmaps {Hc
} in the training set, except for a

elected reference part. We select the top-clothes part (i.e., the
pper body) as the reference part and keep it unchanged in
ur experiments. The pose network P needs to predict all part
eatmaps {Ĥc

} from each randomly transformed edge map Ŝ. We
dopt the stacked hourglass architecture [61] for P and use the
ean squared error to train it.
The goal of the cascaded spatial transformer network T is to

efine the size and location of each body part. Therefore, the
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Fig. 4. In our experiments, a geometrically refined sketch map Ṡ is transformed iteratively for three steps to get a structurally refined sketch map.
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Fig. 5. Illustration of the image generation module. We encode the transformed
ketch as appearance features for StyleGAN2 generator and also modulate it with
ransformer parsing to generate the final human body image.

redicted pose heatmaps {Ĥc
} should be transformed so that they

are as close to the ground truth {Hc
} as possible. Similarly, we

require the randomly transformed part edge maps {Ŝc} to be close
to the ground-truth part edge maps {Sc}. We have found that
extremely large transformations may lead to training instability.
We thus append a regularization term to penalize transformation
matrices that are too large. The training struggles to converge
without this regularization. The spatial transformer network Tj+1

in the (j+1)-th step is fed with the transformed edge map Ŝj and
the combined heatmaps Ĥj in the jth step. Its the initial input is
Ŝ0 and Ĥ0. The loss function of T can be formulated as:

L(T ) =

2∑
j=0

C∑
c=1

λH∥F(T c
j+1(Ŝj, Ĥj), Ĥc

j ) − Hc
∥
2
2

+λS∥F(T c
j+1(Ŝj, Ĥj), Ŝcj ) − Sc∥2

2

+λL∥T c
j+1(Ŝj, Ĥj) − I∥

2
2,

(3)

where F represents an affine transformation operation and I
denotes the identity matrix. T c

j+1(Ŝj, Ĥj) denotes the predicted
ransformation matrix for the cth body part in the (j+1)-th step.
e set λH = 100 and λS = λL = 1 in our experiment to balance

he three terms.

.3. Image generation module

Finally, we need to generate a desired human image I from the
transformed sketch map S̃ and the transformed parsing map M̃
fter the structure refinement module, as illustrated in Fig. 5. We
evise our generation module based on StyleGAN2 [13] which has
chieved superior quality for human image synthesis. Inspired
y previous work [15], we extract the sketch map to features of
imension 16 × 16 × 512 with several residual blocks as it con-
ains both pose and texture constraints. With sketch conditions,
he global synthesis network G could produce reasonable im-
ge patches. However, since the sketch representation inherently
acks semantic information, the generated images sometimes fail
o capture human structure, e.g. texture between legs, jackets and
77
ants not separated. Therefore, we encode the parsing map M̃
and use fully connected layers to produce the semantic latent to
modulate the generator.

To train the global synthesis network G, we could simply take
the edge maps {Si} and the parsing maps {Mi} in the training set
s input. However, we have found that the synthesis network G

trained this way cannot address freehand sketches well. Although
the geometry refinement module can refine the geometric shape
of an input sketch S, the resulting sketch Ṡ still differs from edge
maps found in the training set. The main reason is that edge
maps extracted from natural human images contain many texture
details, and these can violate the local linear assumption [59]
used in the step of manifold projection. Instead, to simulate the
input at the test time, we take the projected version of each edge
map in the training set as the input to train G. We retrieve K
nearest neighbors in the underlying manifold for each edge map
Si. Then, the edge maps {Ṡi} and the parsing maps {Ṁi} decoded by
the projected vectors are fed into G. Inspired by Albahar et al. [15],
the loss function of our generation module is shown in Eq. (4),
which includes an adversarial loss Ladv , a Ll1 loss between the
synthesized image and ground truth image, and a perceptual loss
Lvgg .

L(G) = Ladv + Ll1 + Lvgg (4)

. Experiments

To get the paired data for training, we construct a large-
cale sketch dataset of human images from DeepFashion [11],
s described in Section 4.1. Section 4.2 introduces the architec-
ure of our proposed networks and the implementation details
f model training. We conduct comparison experiments with
everal sketch-to-image techniques in Section 4.3 to show the
uperiority of our method for generating human images from
and-drawn sketches. The ablation study in Section 4.4 evaluates
he contribution of individual components in our method. Exper-
ments are based on the deep learning frameworks Jittor [62] and
ytorch [63].

.1. Data preparation

Training the global synthesis network G needs a dataset of
aired images and sketches. Similar to previous methods [3,4,8],
e extract edge maps from human images in DeepFashion [11]
o build our synthetic sketch dataset. At first, we filter the Deep-
ashion dataset to remove images of the lower body. Then we
pply the edge detection method proposed by Im2Pencil [64]
o get an edge map for each human image (Fig. 6 from (a) to
b)). By employing the sketch simplification method proposed by
imo-Serra et al. [65], we clean noise curves in the extracted
dge maps (Fig. 6(c)) so they resemble hand-drawn sketches
ore. This results in a new large-scale sketch dataset of human

mages with paired data. This dataset contains 37,844 pairs in
otal. We randomly select 2000 pairs as the validation set and the
emaining 35,844 pairs as the training set. Both the edge map and
uman images are of resolution 256 × 256.
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Fig. 6. The process of building our training and validation sets of sketches.
(a): Input human image. (b): Edge extraction of (a) by Im2Pencil [64]. (c):
Sketch simplification of (b) by the method of Simo-Serra et al. [65]. (d): Part
segmentation of (c) by PGN [66].

Our models also require human parsing maps and pose
heatmaps for training. We utilize PGN [66] to predict a parsing
map for each human image in our dataset. To simplify the prob-
lem, we merge several labels in the parsing maps, resulting in
C = 8 types of body parts altogether. The merged parsing maps
are regarded as the ground-truth. These maps also allow us to
segment the paired edge maps to obtain semantically segmented
edge maps (Fig. 6(d)). To prepare the data for training the trans-
former network, we first employ OpenPose [67] to predict the 2D
pose keypoints from the human images, and then generate pose
heatmaps from the keypoints based on the Gaussian distribution
to better capture spatial features.

To evaluate the usefulness of our method in practice, we have
collected freehand sketches from 12 users (6 males, 6 females).
Four of them have good drawing skills, while the others are less
proficient. The users were asked to imitate a given human image
or just draw an imagined human. They were instructed to draw
a segmented sketch part by part, taking around one minute to
complete one sketch on average. We have collected 308 hand-
drawn sketches of human images in total to construct our test
set. We plan to release our dataset of paired human images and
synthetic edge maps as well as hand-drawn sketches publicly for
future research.

4.2. Implementation details

In the geometry refinement module. We share the left and
right arms/legs with the same auto-encoders by leveraging the
human body symmetry, so there are in total 6 part auto-encoders.
Each part encoder Ec contains five downsampling convolutional
layers, with each downsampling layer followed by a residual
block. A fully-connected layer is appended in the end to encode
the features into the latent vector vc of 512 dimensions. Similarly,
the part decoders Dc

S and Dc
M each contain five upsampling con-

volutional layers and five residual blocks in total. The final con-
volutional layers in Dc

S and Dc
M reconstruct the part sketch Sc and

he part mask Mc , respectively. To train the structure refinement
odule, we preprocess the training set by applying random affine

ransformations, which are composed of translation, rotation,
esizing, and shearing transformations. The spatial transformer
etwork Tj in each step consists of five downsampling convolu-
ional layers, five residual blocks, and the last two fully-connected
ayers to predict the affine transformation matrices for all body
arts.
We use the Adam [68] solver to train all the networks. We

et the learning rate to 0.0002 initially and linearly decay it to
after half iterations. For each part auto-encoder, we first train

he encoder Ec and the sketch decoder Dc
S for 100 epochs and

then train the mask decoder Dc
M for 50 epochs, costing about

6 h on one Nvidia GTX 1080 Ti. We train the pose estimation
network P and the cascaded spatial transformer network T both
for 50 epochs, which costs about 50 h on one Nivida GTX 1080
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Ti. We set the batch size to 16 for the above networks. We train
the synthesis network G for 25k images of batch size 32, taking
about 8 days with two NVidia TITAN RTX GPUs. The inference
time of the sketch transformation is about 0.1 s per image, and
the generation takes about 0.6 s per batch (batch size = 16).

4.3. Comparison with state-of-the-art methods

To demonstrate the effectiveness of our method for synthe-
sizing realistic human images from freehand sketches, we com-
pare our method with four state-of-the-art sketch-based image
synthesis methods, including pix2pix [3], pix2pixHD [21], Gau-
GAN [30], DAGAN [33] and Palette [36]. For a fair comparison,
we train all the models on our training set for the same epochs as
our method. Please note that we employ the first-stage generator
of pix2pixHD [21], since the image resolution of our dataset is
limited to 256 × 256. We also compare our method with a
sketch-based image retrieval approach. To achieve this, we train
an auto-encoder for an entire edge map and collect all latent
vectors in the training set. Given an input sketch, we encode it
into a vector and retrieve the nearest neighbor from the training
set. We regard the human image corresponding to the nearest
vector as the retrieval result.

Fig. 7 shows several representative results of our method and
the other five approaches on our test sketches. Compared to
the four state-of-the-art sketch-to-image synthesis techniques,
our method performs much better with visually more pleasing
results. Specifically, our method produces more realistic texture
details and more reasonable body structures, owing to the ge-
ometry and structure refinement guided by the semantic parsing
maps. Compared to the sketch-based image retrieval approach,
our method can produce brand-new human images which respect
user inputs more faithfully (the body pose of the last example in
Fig. 7).

To further evaluate the results, we have applied FID [69] as
a quantitative metric, which measures perceptual distances be-
tween generated images and real images. Table 1 shows that our
method outperforms the other sketch-to-image synthesis meth-
ods [3,21,30], indicating more realistic results by our method.
However, as claimed by [8], this perceptual metric might not
measure the quality of results correctly, since it does not take
the geometry and structure of the human body into consideration.
Therefore, we also conducted a user study to compare our method
with the three sketch-to-image synthesis techniques [3,21,30].
Since Palette [36] has a really high FID (127.9) and unreal back-
ground, we omit it for further comparison. We randomly selected
30 sketches from the test set and showed each sketch along with
the four results by the compared methods in a random order to
users, who were asked to pick the most realistic results. There
were 17 participants in total, resulting in 510 votes. Our method
received significantly more votes than the other methods, as
shown in Table 1. The participants were also asked to give a score
of faithfulness for each result by GauGAN [30] (we select it as the
representative one of the sketch-to-image synthesis methods),
the sketch-based image retrieval method, and our method. The
scores ranged from 1 to 10, the higher the better. Table 1 shows
that the results of our method conform with input sketches
better than the image retrieval method and are comparable to
GauGAN [30].

4.4. Ablation study

We have conducted an ablation study to demonstrate the con-
tributions of the different components of our method. Each time,
we remove the parsing map guidance, the projection of latent
vectors, the spatial transformation respectively, while keeping the
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Fig. 7. Comparison results with a sketch-based image retrieval method and four state-of-the-art sketch-based image synthesis methods [3,21,30,33]. Our method can
produce visually more pleasing results compared with other baselines.
Table 1
Quantitative evaluation of our method, three sketch-based image synthesis
methods [3,21,30], and an image retrieval method. We have used FID [69]
as a quantitative metric and conducted a user study to evaluate the realism
and faithfulness of the results. The arrow after each metric identifies the
improvement direction.

FID (↓) Realism (↑) Faithfulness (↑)

Pix2pix 71.12 7.65% /
Pix2pixHD 70.87 21.37% /
GauGAN 51.92 24.71% 6.21
Image retrieval / / 5.18
Our method 40.09 46.27% 6.15

other components unchanged. As shown in Fig. 8, without the
projection component, our method cannot refine the geometry
of local details, resulting in obvious artifacts. Without the spatial
79
transformation component, our method will produce results with
incorrect connection relationships of joints (e.g., shoulders in
the second and fourth rows) or unreasonable body proportions
(e.g., long neck in the third row). Without the guidance of the
human parsing map, our method cannot distinguish different
body parts, leading to redundant clothes in unnecessary regions
(e.g., arms in the first, second and third rows).

5. Conclusion and future work

We have proposed a projection-transformation-reconstruction
approach for generating realistic human images from hand-drawn
sketches. Our method consists of three modules, including a
geometry refinement module, a structure refinement module, and
an image generation module. The geometry refinement module
plays an important role in converting roughly drawn sketches
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Fig. 8. Comparison results in the ablation study. We remove the projection of
latent vectors, the spatial transformation and the parsing map guidance in our
method, respectively.

Fig. 9. Less successful cases of our method. Left: our method trained on adult
images cannot handle a sketched child well. Right: our method trained on
images with mixed genders might fail to respect the gender of an input sketch.

into semantic sketch maps, which are locally similar to the edge
maps of real human images. This successfully bridges the gap
between realistic images and freehand sketches. The structure
refinement module locally adjusts spatial connections between
body parts and their relative proportions to get a globally more
consistent structure. The image generation module produces vi-
sually pleasing human images with fine facial details. Compar-
ison experiments have shown that our approach outperforms
three state-of-the-art sketch-to-image synthesis methods, which
cannot address freehand sketches well.

Still, the geometry and structure refinement modules are re-
tricted to the data distribution in the training set. Therefore,
ur method cannot produce human images very different from
he images in DeepFashion [11]. For example, as shown in Fig. 9
Left), our method generates an unsatisfying result for a hand-
rawn sketch of a child. We also cannot synthesize images of
ore complicated body poses such as running, jumping because
f the dataset issue. The structure refinement module is also
imited to recovering the human body structure of an adult only
ince there are only adult models in DeepFashion [11]. As we do
80
not divide the latent vectors of different genders for retrieval,
our method is sometimes confused with the gender, as shown
in Fig. 9 (Right). We will collect more types of human images to
improve the generalization ability of our method in future work.
It will also be interesting to introduce colorful strokes to control
the texture styles more exactly.
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