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Figure 1: Given sparsely captured portrait images, our DeepMVSHair automatically produces a complete hair strand model
accurately matching all views. The key component of our pipeline is HairMVSNet, a neural architecture efficiently gathering
hair structure features from multiple input views. The displayed 3D bust model is fitted using [Cao et al. 2014].

ABSTRACT
We present DeepMVSHair, the first deep learning-based method
for multi-view hair strand reconstruction. The key component of
our pipeline is HairMVSNet, a differentiable neural architecture
which represents a spatial hair structure as a continuous 3D hair
growing direction field implicitly. Specifically, given a 3D query
point, we decide its occupancy value and direction from observed
2D structure features. With the query point’s pixel-aligned fea-
tures from each input view, we utilize a view-aware transformer
encoder to aggregate anisotropic structure features to an integrated
representation, which is decoded to yield 3D occupancy and direc-
tion at the query point. HairMVSNet effectively gathers multi-view
hair structure features and preserves high-frequency details based
on this implicit representation. Guided by HairMVSNet, our hair-
growing algorithm produces results faithful to input multi-view
images. We propose a novel image-guided multi-view strand de-
formation algorithm to enrich modeling details further. Extensive
experiments show that the results by our sparse-view method are
comparable to those by state-of-the-art dense multi-view methods
and significantly better than those by single-view and sparse-view
methods. In addition, our method is an order of magnitude faster
than previous multi-view hair modeling methods.
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1 INTRODUCTION
Hair modeling is a significant component of human digitalization,
which has been actively studied with the rapid development of VR
and AR applications. While face modeling [Cao et al. 2015] has
gained great success, due to the complex nature of hair strands,
high fidelity and efficient hair modeling techniques have not been
well developed, making hair modeling a bottleneck to modeling
realistic virtual humans.

Existing image-based hair modeling methods have achieved im-
pressive results but compromise on at least one of various aspects
including data capturing complexity, processing time, manual op-
eration, or modeling quality. Dense multi-view hair modeling tech-
niques [Hu et al. 2014; Luo et al. 2013a; Nam et al. 2019; Paris et al.
2008] currently produce state-of-the-art modeling quality with a
dense camera array, controlled lighting, and long processing time.
Such requirements keep these methods far from average users and
efficient usage. Techniques using less constrained inputs, such as
sparse views [Zhang et al. 2017], selfie videos [Liang et al. 2018],
and RGBD streams [Zhang et al. 2018], are more efficient to use.
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However, their results fall short of exact details because they utilize
shape priors (such as a hair database and user strokes) to integrate
hair structures from different input views. Single-view hair mod-
eling techniques [Chai et al. 2016, 2013; Hu et al. 2015; Saito et al.
2018; Yang et al. 2019; Zhang and Zheng 2018; Zhou et al. 2018]
use only a front face image to produce plausible results, which,
however, only resemble visible frontal parts of target hair and are
not sufficient for complete human digitalization.

To achieve high-fidelity and efficient usage for hair modeling,
we introduce DeepMVSHair, a deep learning-based method for
multi-view hair modeling. The key component of our method is
HairMVSNet which innovatively represents a spatial hair structure
as a purely implicit direction field. This implicit representation
is intrinsically continuous and can preserve more high-frequency
details than explicit voxels used in previous learning-based hair
modeling methods. Instead of using sparse views to optimize a
shape prior as in [Zhang et al. 2017], HairMVSNet infers 3D hair
occupancy and growing direction at a query point from its observed
2D pixel-aligned features at each input view. This formulation en-
courages HairMVSNet to learn to aggregate local features rather
than to predict a global shape, making HairMVSNet generalizable to
unseen hairstyles and possess rich details. These 2D pixel-aligned
features from multiple views are aggregated by a view-aware trans-
former encoder and decoded by an MLP to predict hair occupancy
and growing direction at the query point. Guided by HairMVSNet,
we grow hair strands resembling all input views. To increase mod-
eling fidelity further, we design a multi-view strand deformation
algorithm, revisiting input views to fine-tune hair strands with 2D
guidance to match all views consistently.

As a result, we make a minimal overall compromise on the as-
pects mentioned above: 1) Data capturing complexity. We only
require sparse views that roughly cover most parts of hair geom-
etry. Moreover, we use 2D direction maps, which represent hair
structures rather than color images as input, allowing our method
to work with casual lighting without uniformly controlled lighting
required in traditional MVS methods. 2) Processing time. We typi-
cally take around 1 minute (depending on the size of hair volume)
to generate a complete hair strand model, while classical stereo
matching-based multi-view methods require tens of minutes to
hours. 3) Manual operation. Our pipeline is fully automatic. 4) Mod-
eling quality. Demonstrated by experiments on challenging complex
hairstyles, using only sparse input views, our method achieves high
quality comparable to state-of-the-art dense multi-view methods
and significantly outperforms existing single-view and sparse-view
methods. Also, the lightweight nature of our method enables our
system to be easily deployed for fast avatar creation in many life
sites such as shopping malls, VR/MR experience stores, fashion
salons, and exhibition halls.

In summary, our contributions are as follows:

• We introduce the first deep learning-based method for multi-
view strand hair modeling, using only sparse views to recon-
struct complete hair geometry.

• We introduce HairMVSNet, which employs an implicit rep-
resentation of the hair-growing field to efficiently aggregate
hair structure features from multiple views.

Method Views Range Auto. Time
[Yang et al. 2019] Single Front ✓ ∼15s
[Wu et al. 2022] Single Front ✓ ∼10s

[Zhang et al. 2017] Sparse Complete × ∼25m
[Hu et al. 2014] Dense Complete ✓ 1-2h

Ours Sparse Complete ✓ ∼1m
Table 1: Taxonomyofmethods. Views: number of input views.
Range: faithfullymodelled areas of target hair. Auto:whether
fully automatic. Time: processing time per case.

• We introduce a novel image-guided multi-view strand defor-
mation algorithm to refine modeling results.

• Ourmethod outperforms existing single-view or sparse-view
hair modeling methods, and achieves comparable modeling
quality to state-of-the-art dense-view methods with an order
of magnitude faster inference performance.

2 RELATEDWORK
Multi-view Hair Modeling. Multi-view stereo has been long stud-
ied to reconstruct 3D geometry from a set of captured images.
Due to the thin and complex nature of hair strands, MVS requires
additional adaptation to be applied to hair modeling. Luo et al.
[2012; 2013b] employ hair orientations as constraints to deform
a hair mesh to produce more high-frequency details. Paris et al.
[2008] use a 3D orientation triangulation technique to recover a 3D
growing volume to generate strands. The works of [Hu et al. 2014;
Luo et al. 2013a] utilize shape primitives (ribbons, wisps, strands)
to fit an original point cloud produced by MVS to generate com-
plete connect-to-scalp hair strands. Nam et al. [2019] introduce a
line-based PatchMatch MVS, designed to reconstruct thin strand
segments. Sun et al. [2021] utilize a per-pixel lightcode to boost the
stereo matching process and estimate hair reflectance properties
for realistic rendering. Dense MVS-based methods currently pro-
duce state-of-the-art hair modeling quality. However, they require
a dense camera array, uniform lighting control, and long process-
ing time (tens of minutes to hours), thus making their application
scenarios far from average users.

To simplify the data capturing process, several works try model-
ing hair from less constrained inputs, such as sparse views [Zhang
et al. 2017], selfie videos [Liang et al. 2018], and RGBD streams
[Zhang et al. 2018]. These methods produce plausible results with
the help of either user interactions or a hair database, but fall short
of faithful details to original input views.

Single-view Hair Modeling. Another research direction is to take
a front face image as input and generate hair strands matching
frontal visible hair. Chai et al. [2015; 2016; 2013; 2012] propose a
series of single-view hair modeling methods, stepping forward to
automatic hair modeling. Hu et al. [2015] combine exemplar hair
models from a database to match a reference image with a few
user interactions. Deep learning based methods [Saito et al. 2018;
Yang et al. 2019; Zhang and Zheng 2018; Zhou et al. 2018] generate
plausible results automatically with fast inference. However, their
explicit hair representation (hair strand vertices, orientation voxels)
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Figure 2: Overall pipeline. (a) Each captured image is processed to yield a denoised 2D direction map and a bust depth map.
These two maps are then fed to a backbone network to produce a deep feature map. (b) HairMVSNet effectively integrates
multi-view hair structure features to infer each query point’s 3D occupancy and direction, forming a hair growing direction
volume. (c) Hair strands are grown and fine-tuned in the hair volume to produce final results.

limits both resolution and high frequency details. Single-view hair
modeling methods work well for frontal avatar generation but are
not sufficient for complete human digitalization since their results
fail to match target hair at views distant from the input image.

Neural Implicit Representation. Implicit representations use con-
tinuous functions to encode 3D spatial features, such as occupancy
value [Mescheder et al. 2019] and signed distance [Park et al. 2019]
to object surfaces. Due to their differentiable and compact nature,
they have received extensive attention in 3D modeling and shown
promising results. For example, NeRF [Mildenhall et al. 2020] learns
a volumetric representation of scenes, where an RGB color field
and a density field are encoded as a coordinate-based function.
DVR [Niemeyer et al. 2020] and IDR [Yariv et al. 2020] use differ-
entiable rendering to optimize implicit surfaces. Unisurf [Oechsle
et al. 2021] progressively converges sampling regions close to object
surfaces, thus transforming rough volumes to actual surfaces. NeuS
[Wang et al. 2021a] transforms an SDF to a volume density field
by proposing an unbiased weight function to integrate colors of
sampling points. Wang et al. [2021b] represent hair appearance as
a combination of shape primitives and an implicit texture field to
capture dynamic hair performance. Besides per-scene representa-
tion training, pixel-aligned features [Huang et al. 2018] [Saito et al.
2019] are introduced for implicit representation inference. A con-
current work [Wu et al. 2022] has applied implicit representation
and pixel-aligned features to the single-view hair modeling task.
Different from their hybrid representation including an implicit
direction field and explicit voxels as intermediate, we propose a
purely implicit representation for hair structures and use a view-
aware transformer encoder to successfully aggregate multi-view
information, which is necessary to produce results matching all
input views rather than only the front view.

3 METHODOLOGY
Ourmethod takes sparse-view images with calibrated camera intrin-
sics and extrinsics as input to automatically produce high-fidelity
hair strands matching all the input views. As shown in Fig. 2, our
pipeline is threefold. We first process each captured image to a de-
noised 2D direction map and a bust depth map, which are stacked
channel-wise and fed to a backbone network to produce a deep
feature map (Sec. 3.1). Then we densely sample points in the space
around the subject in the images and query their occupancy and
direction values through HairMVSNet (Sec. 3.2) to form a hair grow-
ing volume. HairMVSNet is trained on synthetic data since there
is no effective way to capture ground-truth 3D hair growing direc-
tions inside hair volumes. Finally we grow and fine-tune strands in
this volume to generate high-fidelity results (Sec. 3.3).

3.1 Preprocessing
Denoised Direction Maps. We first segment the hair regions using
the method proposed in [Chai et al. 2016]. Then, to fill the gap
between synthetic and real hair images, we estimate 2D orientation
maps to represent hair structures and 2D confidence maps to mea-
sure orientation accuracy following [Paris et al. 2004]. Orientation
at low-confidence regions is noisy and less accurate, which has long
been a bottleneck of hair modeling from average quality images.
To overcome this limitation, we train DenoiseNet, which utilizes a
U-Net structure to infer accurate orientation from raw orientation
and confidence maps, as shown in Fig. 2a. DenoiseNet is trained
with raw orientation and confidence maps extracted from rendered
synthetic hair and paired ground-truth orientation maps (we refer
to our supplementary document for the evaluation of DenoiseNet).
We then use the method proposed in [Chai et al. 2016] to obtain di-
rection label maps and combine them with the denoised orientation
maps to remove directional ambiguity and produce the denoised
direction maps.
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Bust Depth Maps. We use a face tracking approach [Cao et al.
2014] to fit a general bust model to the subject. Then we render
depth maps of the bust at all views. These depth maps serve as clues
of the internal body volume to help HairMVSNet learn body-hair
occlusions to focus on modeling hair regions.

3.2 HairMVSNet
Architecture. The goal of HairMVSNet is to learn a general feature
aggregation mapping from a query point’s observed 2D hair struc-
ture features at multiple views to its 3D occupancy and growing
direction. This general mapping should preserve high-frequency
details and be applicable to unseen real hairstyles. To fulfill these
two requirements, we model HairMVSNet as a neural implicit field,
which is free of an explicit resolution limit to achieve high accuracy
and learns generic local hair structure patterns (instead of global
hair shapes) to be well transferred to unseen hairstyles. HairMVS-
Net is formulated as:

𝐻 (𝑋, {𝐷𝑖𝑟, 𝐷𝑒𝑝}1, ..., {𝐷𝑖𝑟, 𝐷𝑒𝑝}𝑛) = (𝜎,𝑑), (1)

where HairMVSNet 𝐻 takes the denoised 2D direction maps 𝐷𝑖𝑟
and the bust depth maps 𝐷𝑒𝑝 and a 3D query point 𝑋 as input to
predict its occupancy 𝜎 and 3D direction 𝑑 .

To start with, we stack 𝐷𝑖𝑟 and 𝐷𝑒𝑝 of input view 𝑖 channel-
wisely and feed them to a backbone network 𝐹 to produce a deep
feature map 𝑓𝑖

𝑓𝑖 = 𝐹 ({𝐷𝑖𝑟, 𝐷𝑒𝑝}𝑖 ). (2)

There is no specific limitation on the choice of the backbone
network 𝐹 and any dense prediction network should suffice. We
found that a lightweight U-Net strikes a good balance between
inference accuracy and efficiency.

We then fetch pixel-aligned features 𝑓𝑖 (𝑥𝑖 ) of query point 𝑋
from each captured view. Unlike isotropic features such as texture
colors, hair growing directions are anisotropic and show different
2D observations at different views. Therefore, besides pixel-aligned
features, view-aware features are necessary to inform HairMVS-
Net of query points’ observation views. A complete feature token
𝜙𝑖 from an input view is formulated as:

𝜙𝑖 = 𝑔(𝑓𝑖 (𝑥𝑖 ), 𝑝𝑖 (𝑋 )) + 𝑒𝑖 , (3)

where 𝑔(·) is an MLP to fuse features. The pixel-aligned features
are augmented by the view-aware features, including the query
point 𝑋 ’s position 𝑝𝑖 (𝑋 ) at the observation camera’s coordinate
and a learnable view embedding 𝑒𝑖 . These view-aware features
help to learn correlations between views and significantly improve
modeling accuracy both qualitatively (Fig. 4) and quantitatively
(Tab. 2).

To integrate feature tokens from multiple views, the integration
method is required toworkwith an unordered and arbitrary number
of input feature tokens. A transformer [Vaswani et al. 2017] encoder
is suitable for this task:

𝐸 (𝑞(𝑋 ), 𝜙1, ..., 𝜙𝑛) = Φ𝑋 , (4)

where a query token 𝑞 fused with the position embedding of 𝑋
is employed to query feature tokens {𝜙𝑖 } from multiple views to
generate an integrated feature token Φ𝑋 . The transformer encoder
𝐸 is aware of each feature token’s view identity with view-aware

features and uses stacked attention blocks to effectively correlate
view feature tokens.

Finally, we decode Φ𝑋 using an MLP to predict occupancy 𝜎 and
direction 𝑑 of the query point 𝑋 :

𝑀𝐿𝑃 (Φ𝑋 ) = (𝜎,𝑑) . (5)

Loss Functions. The predicted occupancy and 3D direction values
are supervised by ground-truth synthetic data. For each training
pass, we feed HairMVSNet with a batch of 𝑁 sampling points to
compute gradients. Occupancy is formulated as a binary classifica-
tion problem and trained with the cross entropy loss:

𝐿𝑜𝑐𝑐 =
1
𝑁

𝑁∑︁
𝑖

[
𝜎∗ log𝜎 + (1 − 𝜎∗) log (1 − 𝜎)

]
, (6)

where 𝜎∗ is the ground-truth occupancy value.
3D direction is trained with the average L-1 loss of vector com-

ponents on each axis. Specifically, we have

𝐿𝑜𝑟𝑖 =
1
𝑁

𝑁∑︁
𝑖

∥𝑑∗ − 𝑑 ∥1
3

. (7)

Training Data. We use 343 synthetic hairstyles from the USC-
HairSalon dataset introduced in [Hu et al. 2015]. Diverse hairstyles
(including long, short, straight, and curly hairstyles) are used to
train a generalizable model. Each synthetic training case is com-
posed of:

1) Sparse view images. To make camera views roughly cover the
whole hair model without loss of generality, we initially set virtual
cameras uniformly distributed on a circle around a hair model and
then add random variations to both camera poses and intrinsics for
each training case.

2) Sampling points. For occupancy prediction, since hair strands
physically occupy very few volumes, we voxelize the 3D space
around a hair model and regard a voxel as positive if it is crossed by
any strands, otherwise as negative. Then we densely sample points
at both positive voxels and their neighboring negative voxels, and
sparsely sample points in the remaining empty space. This setting
encourages our learning to focus on hair regions and balances
positive and negative samples. For direction prediction, we use
original hair strand vertices as sampling points to maintain high
resolution.

We augment our synthetic dataset with random scaling, rotation
and translation on hair models to obtain 2,195 training cases and
549 test cases.

3.3 Strands Generation and Refinement
Growing Volume Construction. To generate hair strands efficiently,
we build a hair-growing volume by voxelizing the space around the
subject in the input images and querying occupancy and direction
values at voxel corners through HairMVSNet. The resolution and
range of voxels are free of an explicit limit based on our implicit
representation. We found that a setup of 5mm voxel side length
and 0.5m × 0.6m × 0.8m (L × D × H) covering range strikes a good
balance between querying efficiency and volume resolution for all
of our captured data.

Hair Growing. We uniformly sample starting points and grow
strands bidirectionally in the growing volume. In each growing
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step, the growing direction of the current strand end is a trilinear
interpolation result of directions at the corners of the voxel that
contains the strand end.

Multi-view Strand Deformation. Although the hair strands ini-
tially grown in the hair-growing volume already resemble all input
views, they might be over-smooth. This is because in practice the
resolution of the hair-growing volume cannot be infinitely high,
which impairs the efficiency of our pipeline. Therefore, with the
key insight that a strand should match its 2D observation from
views where it is visible, we revisit the input images and devise an
image-guided strand deformation to fine-tune the modeling result.

As shown in Fig. 3, for each input image, we first trace strands
along its 2D direction map inside the hair regions to form a set of
2D strands� = {�} (Fig. 3b). These 2D strands possess most details
in the input image (Fig. 3a) and serve as guidance for deformation.
We then project each 3D strand �̂ to views where it is visible to yield
a set of projected 2D strands � = {�} (Fig. 3c). Each projected 2D
strand � is deformed w.r.t. its matching guide strands (Fig. 3d blue)
from � in a segment-wise manner to generate a set of deformed
2D strands � = {�} , and this deformation is resistant to crossing
strands (Fig. 3d red) that do not match � . The strands in � are
integrated to obtain the final deformed 3D strand �̂ by unprojection
(Fig. 3e). Our deformation algorithm ensures consistency across
different views, as the fine-tuned result of a real hairstyle shown
in Fig. 4f (fine-tuned on Fig. 4e). We refer to our supplementary
document for more details of our deformation algorithm and a
comparison with a single-view deformation method proposed in
[Hu et al. 2015].

4 EXPERIMENTS
4.1 Capture System
We use 4 Canon EOS 850d cameras mounted on a box frame struc-
ture to capture image data. When an actor/actress sits at the center
of the box, these 4 cameras are approximately set at his/her front,
back, left, and right, respectively to roughly cover most of the hair
geometry. Camera intrinsics and extrinsics are calibrated with a
checkerboard pattern. The camera captures are synchronized with
remote cable releases. 4 LED lights are placed around the box frame
to provide a bright environment for a better capture of hair texture.
Note that we do not require a uniform lighting condition, and thus
casual light sources providing properly bright illumination should
suffice.

(a) (b) (c) (d) (e)

Figure 3: Image-guided deformation. (a) Input Image. (b) 2D
guide strands. (c) Project a 3D strand to the camera views
where it is visible. (d) Deform a projected strand (orange) w.r.t
its matching guide strands (blue) on a 2D plane. (e) Unproject
the deformed 2D strands to 3D space.

(a) (f)(e)(d)(c)(b)

Figure 4: Qualitative comparisons of feature aggregation
methods including average pooling (b), MLP mapping (c),
ours without view-aware features (d), and ours (e). (f) is our
fine-tuned (Sec. 3.3) full result and (b)-(e)are not fine-tuned
for a fair comparison.

‘

Method Precision (%) ↑ Recall (%) ↑ Dir. L1 Loss ↓
AVG 82.27 84.95 0.1679
MLP 84.07 83.76 0.1733

Ours w/o VA 83.27 84.18 0.1725
Ours 84.08 85.96 0.1295

Table 2: Quantitative comparisons of feature aggregation
methods. AVG: average pooling; VA: view-aware features.
Our method infers directions with a significantly lower loss.

4.2 Evaluation
Evaluation of View-aware Transformer Encoder. To validate the ef-
fectiveness of our view-aware transformer encoder, we conduct
an ablation study by replacing it with other feature aggregation
methods, including average pooling and MLP mapping with the
same view-aware feature tokens as input. We also evaluate our
transformer encoder’s performance without the view-aware fea-
tures. As shown in Tab. 2, although the other aggregation methods
achieve comparable precision and recall of occupancy inference on
the synthetic dataset, they fall short of inferring accurate directions
due to the anisotropic nature of directions. When transferring to
real data shown in Fig. 4, the other methods produce fewer details
compared to ours and cause discontinuity in the hair volume. This
is because the hairstyle shown in Fig. 4a mainly distributes on the
left side of the actress and the other methods are disturbed by empty
2D observations from other input views, while our method properly
integrates unevenly distributed hair structures.

Evaluation of Various Numbers of Views. Although we capture
real hairstyles using only 4 cameras in our experiments (we assume
4 views to be minimal to cover a complete hair), our pipeline is
capable to accept more than 4 input views to achieve better mod-
eling accuracy. We evaluate our pipeline’s performance with the
increased number of input views on the synthetic dataset. In this
evaluation, a shallow convolutional network is used as the back-
bone network to avoid lack of graphics memory when more images



SIGGRAPH Asia’22 Conference Proceedings, December 6-9, 2022, Daegu, South Korea

Figure 5: Comparisons of results using different numbers
of input views. From left to right: ground truth, respective
results using 4, 8, 12, 16, and 24 views. The second row dis-
plays zoom-in views and the third row displays hair-growing
directions (encoded in color).

Num. of Views Precision (%) ↑ Recall (%) ↑ Dir. L1 Loss ↓
4 81.68 86.61 0.1326
8 83.91 85.62 0.1318
12 84.53 88.06 0.1265
16 86.32 88.48 0.1186
24 87.02 89.21 0.1158

Table 3: Quantitative comparisons of different numbers of
input views. More input views contribute to higher accuracy.

are added (this is why the results using 8 views shown in Tab. 3
are less accurate than those using 4 views shown in Tab. 2). As
shown in Tab. 3 and Fig. 5, both occupancy and direction become
more accurate with more input views, showing that our pipeline
effectively learns the correlation between views.

4.3 Comparisons
We first compare our method with two single-view deep learning-
based hair modelingmethods: [Yang et al. 2019] and [Wu et al. 2022].
The former is based on a volumetric representation while the latter
uses implicit fields with voxels as an intermediate representation. It
can be seen from Fig. 6 that ourmethod, which uses a purely implicit
function as our neural architecture, produces a result with richer
details faithful to the input image. Quantitatively evaluated on the
343 synthetic hairstyles used in our experiments (also included in
the training dataset of [Wu et al. 2022]), we achieve 84.08% precision
of occupancy and 0.1295 L1 loss of direction (as shown in Tab. 2),
better than 76.36% precision and 0.1750 L1 Loss achieved by [Wu
et al. 2022]. This demonstrates that our method properly integrates
pixel-aligned features from multiple input views to achieve better
accuracy.

We then compare our method with a state-of-the-art sparse view
hair modeling method [Zhang et al. 2017]. Since they deform an
exemplar hair model to match observed hair shapes, their results
are coarser (especially at thin tail parts) than ours, as shown in Fig.
7. In addition, their method involves several manual operations and

(a) (b) (c) (d)

Figure 6: Qualitative comparison between ourmethod (d) and
two single-view hair modeling methods: [Yang et al. 2019]
(b) and [Wu et al. 2022] (c).

Figure 7: A comparison with a state-of-the-art sparse-view
hair modeling method. From left to right: input images, re-
sults using [Zhang et al. 2017], and ours.

Figure 8: A comparison with a state-of-the-art dense-view
hair modeling method. From left to right: input images, re-
sults using [Hu et al. 2014], and ours.

takes around 25 minutes to generate a hair strand model, while our
method takes only 1 minute without any manual labor.

We also compare our method with a state-of-the-art dense view
hair modeling method [Hu et al. 2014]. They produce an accurate
strand model with 66 input images based on traditional MVS and
an exemplar strands fitting algorithm with 1-2 hours processing
time. We use only 8 input views (selected to cover most of the
hair geometry) to produce results also matching all input views,
though some empty spaces between thin strands are not accurately
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Figure 9: Our results of various hairstyles, rendered at input views and displayed side by side with the input images.

recovered (Fig. 8 blue square) because the deficiency in the seg-
mentation method we used (a continuous and inaccurate mask is
predicted). Note that our pipeline only takes around 1 minute to
generate full results, making a step forward to efficient high quality
hair modeling.

5 DISCUSSIONS AND LIMITATIONS
Although our method can faithfully model various hairstyles, there
are still a few challenges to overcome, which may inspire future
work. First, our method cannot model complex internal structures
(such as braids) because they are not visible from input images.
Also, since our method takes the hair-growing orientation as input,
it may fail to model extremely short or curly (such as an Afro)
hairstyles if their orientations cannot be well extracted from images.
To improve our system, strand shape priors might be utilized to
supplement plausible structures when observed orientations are
insufficient. Second, we only capture hair strand geometry, while
texture and material properties are also essential for realistic hair.

Incorporating these properties into synthetic hair datasets should be
helpful to infer properties of real hairstyles under less-constrained
capture setting. Third, with proper adaptation, a more convenient
capture procedure such as recording a video using smartphones
(camera poses can be measured by built-in IMUs) might promote
our technique to individual users.

6 CONCLUSION
We have proposed a deep learning-based method for multi-view
hair modeling, enabling high-quality hair modeling to be performed
efficiently. We propose DenoiseNet to infer accurate hair orienta-
tion maps from raw orientation maps, since the lack of accurate
hair orientation maps has long been a bottleneck in applying hair
modeling methods to average quality images. We also propose an
image-guided strand deformation algorithm to increase modeling
fidelity further. Our method works robustly on a wide range of
hairstyles with only sparse view inputs.
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