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Fig. 1. Our DeepFaceDrawing system allows users with little training in drawing to produce high-quality face images (Bottom) from rough or even incomplete
freehand sketches (Top). Note that our method faithfully respects user intentions in input strokes, which serve more like soft constraints to guide image
synthesis.

Recent deep image-to-image translation techniques allow fast generation
of face images from freehand sketches. However, existing solutions tend to
overfit to sketches, thus requiring professional sketches or even edge maps
as input. To address this issue, our key idea is to implicitly model the shape
space of plausible face images and synthesize a face image in this space to
approximate an input sketch. We take a local-to-global approach. We first
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learn feature embeddings of key face components, and push corresponding
parts of input sketches towards underlying component manifolds defined
by the feature vectors of face component samples. We also propose another
deep neural network to learn the mapping from the embedded component
features to realistic images with multi-channel feature maps as intermedi-
ate results to improve the information flow. Our method essentially uses
input sketches as soft constraints and is thus able to produce high-quality
face images even from rough and/or incomplete sketches. Our tool is easy to
use even for non-artists, while still supporting fine-grained control of shape
details. Both qualitative and quantitative evaluations show the superior gen-
eration ability of our system to existing and alternative solutions. The us-
ability and expressiveness of our system are confirmed by a user study.

CCS Concepts: • Human-centered computing → Graphical user in-
terfaces; • Computing methodologies → Perception; Texturing; Image
processing.
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1 INTRODUCTION
Creating realistic human face images from scratch benefits vari-
ous applications including criminal investigation, character design,
educational training, etc. Due to their simplicity, conciseness and
ease of use, sketches are often used to depict desired faces. The re-
cently proposed deep learning based image-to-image translation
techniques (e.g., [Isola et al. 2017; Wang et al. 2018]) allow auto-
matic generation of photo images from sketches for various object
categories including human faces, and lead to impressive results.
Most of such deep learning based solutions (e.g., [Dekel et al.

2018; Isola et al. 2017; Li et al. 2019; Wang et al. 2018]) for sketch-
to-image translation often take input sketches almost fixed and at-
tempt to infer the missing texture or shading information between
strokes. To some extent, their problems are formulated more like
reconstruction problems with input sketches as hard constraints.
Since they often train their networks from pairs of real images and
their corresponding edge maps, due to the data-driven nature, they
thus require test sketches with quality similar to edge maps of real
images to synthesize realistic face images. However, such sketches
are difficult to make especially for users with little training in draw-
ing.
To address this issue, our key idea is to implicitly learn a space

of plausible face sketches from real face sketch images and find the
closest point in this space to approximate an input sketch. In this
way, sketches can be used more like soft constraints to guide im-
age synthesis. Thus we can increase the plausibility of synthesized
images even for rough and/or incomplete input sketches while re-
specting the characteristics represented in the sketches (e.g., Fig-
ure 1 (a-d)). Learning such a space globally (if exists) is not very
feasible due to the limited training data against an expected high-
dimensional feature space. This motivates us to implicitly model
component-level manifolds, which makes a better sense to assume
each componentmanifold is low-dimensional and locally linear [Roweis
and Saul 2000]. This decision not only helps locally span such man-
ifolds using a limited amount of face data, but also enables finer-
grained control of shape details (Figure 1 (e)).

To this end we present a novel deep learning framework for
sketch-based face image synthesis, as illustrated in Figure 3. Our
system consists of three main modules, namely, CE (Component
Embedding), FM (Feature Mapping), and IS (Image Synthesis). The
CEmodule adopts an auto-encoder architecture and separately learns
five feature descriptors from the face sketch data, namely, for “left-
eye”, “right-eye”, “nose”, “mouth”, and “remainder” for locally span-
ning the component manifolds. The FM and IS modules together
form another deep learning sub-network for conditional image gen-
eration, and map component feature vectors to realistic images.
Although FM looks similar to the decoding part of CE, by map-
ping the feature vectors to 32-channel feature maps instead of 1-
channel sketches, it improves the information flow and thus pro-
vides more flexibility to fuse individual face components for higher-
quality synthesis results.
Inspired by [Lee et al. 2011], we provide a shadow-guided inter-

face (implemented based on CE) for users to input face sketches
with proper structures more easily (Figure 8). Corresponding parts
of input sketches are projected to the underlying facial component

manifolds and then mapped to the corresponding feature maps for
conditions for image synthesis. Our system produces high-quality
realistic face images (with resolution of 512 × 512), which faith-
fully respect input sketches. We evaluate our system by comparing
with the existing and alternative solutions, both quantitatively and
qualitatively. The results show that our method produces visually
more pleasing face images. The usability and expressiveness of our
system are confirmed by a user study. We also propose several in-
teresting applications using our method.

2 RELATED WORK
Our work is related to existing works for drawing assistance and
conditional face generation. We focus on the works closely related
to ours. A full review on such topics is beyond the scope of our
paper.

2.1 Drawing Assistance
Multiple guidance or suggestive interfaces (e.g., [Iarussi et al. 2013])
have been proposed to assist users in creating drawings of better
quality. For example, Dixon et al. [2010] proposed iCanDraw, which
provides corrective feedbacks based on an input sketch and facial
features extracted from a reference image. ShadowDraw by Lee et
al. [2011] retrieves real images from an image repository involving
many object categories for an input sketch as query and then blends
the retrieved images as shadow for drawing guidance. Our shadow-
guided interface for inputting sketches is based on the concept of
ShadowDraw but specially designed for assisting in face drawing.
Matsui et al. [2016] proposedDrawFromDrawings, which allows the
retrieval of reference sketches and their interpolation with an input
sketch. Our solution for projecting an input sketch to underlying
component manifolds follows a similar retrieval-and-interpolation
idea but we perform this in the learned feature spaces, without ex-
plicit correspondence detection, as needed by DrawFromDrawings.
Unlike the above works, which aim to produce quality sketches as
output, our work treats such sketches as possible inputs and we are
more interested in producing realistic face images even from rough
and/or incomplete sketches.

Another group of methods (e.g., [Arvo and Novins 2000; Igarashi
et al. 1997]) take a more aggressive way and aim to automatically
correct input sketches. For example, Limpaecher et al. [2013] learn a
correction vector field from a crowdsourced set of face drawings to
correct a face sketch, with the assumption that such face drawings
and the input sketch is for a same subject. Xie et al. [2014] and
Su et al. [2014] propose optimization-based approaches for refining
sketches roughly drawn on a reference image. We refine an input
sketch by projecting individual face components of the input sketch
to the corresponding component manifolds. However, as shown in
Figure 5, directly using such refined component sketches as input
to conditional image generation might cause artifacts across facial
components. Since our goal is sketch-based image synthesis, we
thus perform sketch refinement only implicitly.

2.2 Conditional Face Generation
In recent years, conditional generative models, in particular, con-
ditional Generative Adversarial Networks [Goodfellow et al. 2014]
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Fig. 2. The comparisons of different edge extraction methods. (a): Input
real image. (b): Result by HED [Xie and Tu 2015]. (c): Result by APDraw-
ingGAN [Yi et al. 2019]. (d): Canny edges [Canny 1986]. (e): the result by
the Photocopy filter in Photoshop. (f): Simplification of (e) by [Simo-Serra
et al. 2016]. Photo (a) courtesy of © LanaLucia.

(GANs), have been popular for image generation conditioned on
various input types. Karras et al. [2019] propose an alternative for
the generator in GAN that separates the high level face attributes
and stochastic variations in generating high quality face images.
Based on conditional GANs [Mirza and Osindero 2014], Isola et
al. [2017] present the pix2pix framework for various image-and-
image translation problems like image colorization, semantic seg-
mentation, sketch-to-image synthesis, etc. Wang et al. [2018] intro-
duce pix2pixHD, an improved version of pix2pix to generate higher-
resolution images, and demonstrate its application to image synthe-
sis from semantic label maps. Wang et al. [2019] generate an image
given a semantic label map as well as an image exemplar. Sangkloy
et al. [2017] take hand-drawn sketches as input and colorize them
under the guidance of user-specified sparse color strokes.These sys-
tems tend to overfit to conditions seen during training, and thus
when sketches being used as conditions, they achieve quality re-
sults only given edge maps as input. To address this issue, instead
of training an end-to-end network for sketch-to-image synthesis,
we exploit the domain knowledge and condition GAN on feature
maps derived from the component feature vectors.
Considering the known structure of human faces, researchers

have explored component-based methods (e.g., [Huang et al. 2017])
for face image generation. For example, given an input sketch, Wu
and Dai [2009] first retrieve best-fit face components from a data-
base of face images, then compose the retrieved components to-
gether, and finally deform the composed image to approximate a
sketch. Due to their synthesis-and-deforming strategy, their solu-
tion requires a well-drawn sketch as input. To enable component-
level controllability, Gu et al. [2019] use auto-encoders to learn
feature embeddings for individual face components, and fuse com-
ponent feature tensors in a mask-guided generative network. Our

CE module is inspired by their work. However, their local embed-
dings learned from real images are mainly used to generate portrait
images with high diversity while ours learned from sketch images
are mainly for implicitly refining and completing input sketches.

Conditional GANs have also been adopted for local editing of
face images, via interfaces either based on semantic label masks
[Gu et al. 2019; Lee et al. 2019; Wang et al. 2019] or sketches [Jo
and Park 2019; Portenier et al. 2018]. While the former is more flex-
ible for applications such as component transfer and style transfer,
the latter provides a more direct and finer control of details, even
within face components. Deep sketch-based face editing is essen-
tially a sketch-guided image completion problem, which requires
the completion of missing parts such that the completed content
faithfully reflects an input sketch and seamlessly connects to the
known context. It thus requires different networks from ours. The
SN-patchGAN proposed by Jo and Park [2019] is able to produce im-
pressive details for example for a sketched earring. However, this
also implies that their solution requires high-quality sketches as in-
put. To tolerate the errors in hand-drawn sketches, Portenier et al.
[2018] propose to use smoothed edge maps as part of the input to
their conditional completion network. Our work takes a step fur-
ther to implicitly model face component manifolds and perform
manifold projection.

Several attempts have also been made to generate images from
incomplete sketches. To synthesize face images from line maps pos-
sibly with some missing face components, Li et al. [2019] proposed
a conditional self-attention GAN with a multi-scale discriminator,
where a large-scale discriminator enforces the completeness of global
structures. Although their method leads to visually better results
than pix2pix [Isola et al. 2017] and SkethyGAN [Chen and Hays
2018], due to the direct condition on edge maps, their solution has
poor ability to handle hand-drawn sketches. Ghosh et al. [2019]
present a shape generator to complete a partial sketch before image
generation, and present interesting auto-completion results. How-
ever, their synthesized images still exhibit noticeable artifacts, since
the performance of their image generation step (i.e., pix2pixHD [Wang
et al. 2018] for single-class generation and SkinnyResNet [2019]
for multi-class generation) heavily depends on the quality of input
sketches. A similar problem exists with the progressive image re-
construction network proposed by You et al. [2019], which is able to
reconstruct images from extremely sparse inputs but still requires
relatively accurate inputs.

To alleviate the heterogeneity of input sketches and real face im-
ages, some researchers resort to the unpaired image-to-imagemeth-
ods (e.g., [Huang et al. 2018; Yi et al. 2017; Zhu et al. 2017]). These
methods adopt self-consistent constraints to solve the lack of paired
data. While the self-consistent mechanism ensures the correspon-
dence between the input and the reconstructed input, there is no
guarantee for the correspondence between the input and the trans-
formed representation. Since our goal is to transform sketches to
the corresponding face images, these frameworks are not suitable
for our task. In addition, there are someworks leveraging the image
manifolds. For example, Lu et al. [2017] learn a fused representation
from shape and texture features to construct a face retrieval system.
In contrast, our method not only retrieves but also interpolates the
face representations in generation. Zhu et al. [2016] first construct
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Fig. 3. Illustration of our network architecture. The upper half is the Component Embedding module. We learn feature embeddings of face components using
individual auto-encoders. The feature vectors of component samples are considered as the point samples of the underlying component manifolds and are used
to refine an input hand-drawn sketch by projecting its individual parts to the corresponding component manifolds. The lower half illustrates a sub-network
consisting of the Feature Mapping (FM) and the Image Synthesis (IS) modules. The FM module decodes the component feature vectors to the corresponding
multi-channel feature maps (H ×W × 32), which are combined according to the spatial locations of the corresponding facial components before passing
them to the IS module.

a manifold with the real image dataset, then predict a dense corre-
spondence between a projected source image and an edit-oriented
“feasible” target in the manifold, and finally apply the dense cor-
respondence back to the original source image to complete the vi-
sual manipulation. In contrast, our method directly interpolates the
nearest neighbors of the query and feeds the interpolation result to
the subsequent generation process. Compared to Zhu et al. [2016],
our method is more direct and efficient for the sketch-based image
generation task.

3 METHODOLOGY
The 3D shape space of human faces has been well studied (see the
classic morphable face model [Blanz and Vetter 1999]). A possible
approach to synthesize realistic faces from hand-drawn sketches is
to first project an input sketch to such a 3D face space [Han et al.
2017] and then synthesize a face image from a generated 3D face.
However, such a global parametric model is not flexible enough to
accommodate rich image details or support local editing. Inspired
by [Gao et al. 2019], which shows the effectiveness of a local-global
structure for faithful local detail synthesis, our method aims for

modeling the shape spaces of face components in the image do-
main.

To achieve this, we first learn the feature embeddings of face com-
ponents (Section 3.2). For each component type, the points corre-
sponding to component samples implicitly define a manifold. How-
ever, we do not explicitly learn this manifold, since we are more
interested in knowing the closest point in such a manifold given a
new sketched face component, which needs to be refined. Observ-
ing that in the embedding spaces semantically similar components
are close to each other, we assume that the underlying component
manifolds are locally linear. We then follow the main idea of the
classic locally linear embedding (LLE) algorithm [Roweis and Saul
2000] to project the feature vector of the sketched face component
to its component manifold (Section 3.3).

The learned feature embeddings also allow us to guide condi-
tional sketch-to-image synthesis to explicitly exploit the informa-
tion in the feature space. Unlike traditional sketch-to-image synthe-
sis methods (e.g., [Isola et al. 2017; Wang et al. 2018]), which learn
conditional GANs to translate sketches to images, our approach
forces the synthesis pipeline to go through the component feature
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spaces and then map 1-channel feature vectors to 32-channel fea-
ture maps before the use of a conditional GAN (Section 3.2). This
greatly improves the information flow and benefits component fu-
sion. Below we first discuss our data preparation procedure (Sec-
tion 3.1). We then introduce our novel pipeline for sketch-to-image
synthesis (Section 3.2), and our approach for manifold projection
(Section 3.3). Finally present our shadow-guided interface (Section
3.4).

3.1 Data Preparation
To train our network, it requires a reasonably large-scale dataset of
face sketch-image pairs. There exist several relevant datasets like
the CUHK face sketch database [Wang and Tang 2008; Zhang et al.
2011]. However, the sketches in such datasets involve shading ef-
fects while we expect a more abstract representation of faces using
sparse lines. We thus contribute to a new dataset of pairs of face im-
ages and corresponding synthesized sketches. We build this on the
face image data of CelebAMask-HQ [Lee et al. 2019], which con-
tains high-resolution facial images with semantic masks of facial
attributes. For simplicity, we currently focus on front faces, with-
out decorative accessories (e.g., glasses, face masks).
To extract sparse lines from real images, we have tried the follow-

ing edge detection methods. As shown in Figure 2 (b) and (d), the
holistically-nested edge detection (HED) method [Xie and Tu 2015]
and the traditional Canny edge detection algorithm [Canny 1986]
tend to produce edge maps with discontinuous lines. APDrawing-
GAN [Yi et al. 2019], a very recent approach for generating por-
trait drawings from face photos leads to artistically pleasing results,
which, however, are different from our expectation (e.g., see the re-
gional effects in the hair area and missing details around the mouth
in Figure 2 (c)). We also resorted to the Photocopy filter in Photo-
shop, which preserves facial details butmeanwhile brings excessive
noise (Figure 2 (e)). By applying the sketch simplification method
by Simo-Serra et al. [2016] to the result by the Photocopy filter,
we get an edge map with the noise reduced and the lines better
resembling hand-drawn sketches (Figure 2 (f)). We thus adopt this
approach (i.e., Photocopy + sketch simplification) to prepare our
training dataset, which contains 17K pairs of sketch-image pairs
(see an example pair in Figure 2 (f) and (a)), with 6247 for male sub-
jects and 11456 for female subjects. Since our dataset is not very
large-scale, we reserve the data in the training process as much as
possible to provide as many samples as possible to span the compo-
nent manifolds. Thus we set a training/testing ratio to 20:1 in our
experiments. It results in 16,860 samples for training and 842 for
testing.

3.2 Sketch-to-Image Synthesis Architecture
As illustrated in Figure 3, our deep learning framework takes as in-
put a sketch image and generates a high-quality facial image of size
512 × 512. It consists of two sub-networks: The first sub-network
is our CE module, which is responsible for learning feature embed-
dings of individual face components using separate auto-encoder
networks. This step turns component sketches into semantically
meaningful feature vectors. The second sub-network consists of
two modules: FM and IS. FM turns the component feature vectors

Fig. 4. Two examples of generation flexibility supported by using separate
components for the left and right eyes.

to the corresponding feature maps to improve the information flow.
The feature maps of individual face components are then combined
according to the face structure and finally passed to IS for face im-
age synthesis.

Component Embedding Module. Since human faces share a clear
structure, we decompose a face sketch into five components, de-
noted as Sc , c ∈ {1, 2, 3, 4, 5} for “left-eye”, “right-eye”, “nose”,
“mouth”, and “remainder”, respectively. To handle the details in-
between components, we define the first four components simply
by using four overlappingwindows centered at individual face com-
ponents (derived from the pre-labeled segmentation masks in the
dataset), as illustrated in Figure 3 (Top-Left). A “remainder” image
corresponding to the “remainder” component is the same as the
original sketch image but with the eyes, nose and mouth removed.
Here we treat “left-eye” and “right-eye” separately to best explore
the flexibility in the generated faces (see two examples in Figure
4). To better control of the details of individual components, for
each face component type we learn a local feature embedding. We
obtain the feature descriptors of individual components by using
five auto-encoder networks, denoted as {Ec ,Dc } with Ec being an
encoder and Dc a decoder for component c .

Each auto-encoder consists of five encoding layers and five de-
coding layers. We add a fully connected layer in the middle to en-
sure the latent descriptor is of 512 dimensions for all the five compo-
nents. We experimented with different numbers of dimensions for
the latent representation (128, 256, 512) – we found that 512 dimen-
sions are enough for reconstructing and representing the sketch
details. Instead, lower-dimensional representations tend to lead to
blurry results. By trial and error, we append a residual block after
every convolution/deconvolution operation in each encoding/decoding
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layer to construct the latent descriptors instead of only using convo-
lution and deconvolution layers. We use Adam solver [Kingma and
Ba 2014] in the training process. Please find the details of the net-
work architectures and the parameter settings in the supplemental
materials.

Feature Mapping Module. Given an input sketch, we can project
its individual parts to the component manifolds to increase its plau-
sibility (Section 3.3). One possible solution to synthesize a realistic
image is to first convert the feature vectors of the projected man-
ifold points back to the component sketches using the learned de-
coders {Dc }, then perform component-level sketch-to-image syn-
thesis (e.g., based on [Wang et al. 2018]), and finally fuse the compo-
nent images together to get a complete face. However, this straight-
forward solution easily leads to inconsistencies in synthesized re-
sults in terms of both local details and global styles, since there is
no mechanism to coordinate the individual generation processes.
Another possible solution is to first fuse the decoded component

sketches into a complete face sketch (Figure 5 (b)) and then per-
form sketch-to-image synthesis to get a face image (Figure 5 (c)). It
can be seen that this solution also easily causes artifacts (e.g., mis-
alignment between face components, incompatible hair styles) in
the synthesized sketch, and such artifacts are inherited to the syn-
thesized image, since existing deep learning solutions for sketch-
to-image synthesis tend to use input sketches as rather hard con-
straints, as discussed previously.
We observe that the above issues mainly happen in the overlap-

ping regions of the cropping windows for individual components.
Since sketches only have one channel, the incompatibility of neigh-
boring components in the overlapping regions is thus difficult to
automatically resolve by sketch-to-image networks.This motivates
us to map the feature vectors of sampled manifold points to multi-
channel feature maps (i.e., 3D feature tensors). This significantly
improves the information flow, and fusing the feature maps instead
of sketch components helps resolve the inconsistency between face
components.
Since the descriptors for different components bear different se-

mantic meanings, we design the FM module with five separate de-
coding models converting feature vectors to spatial feature maps.
Each decodingmodel consists of a fully connected layer and five de-
coding layers. For each feature map, it has 32 channels and is of the
same spatial size as the corresponding component in the sketch do-
main. The resulting feature maps for “left-eye”, “right-eye”, “nose”,
and “mouth” are placed back to the “remainder” feature maps ac-
cording to the exact positions of the face components in the input
face sketch image to retain the original spatial relations between
face components. As illustrated in Figure 3 (Bottom-Center), we
use a fixed depth order (i.e., “left/right eyes” > “nose” > “mouth” >
“remainder”) to merge the feature maps.

Image Synthesis Module. Given the combined feature maps, the
IS module converts them to a realistic face image. We implement
this module using a conditional GAN architecture, which takes the
feature maps as input to a generator, with the generation guided
by a discriminator. Like the global generator in pix2pixHD [Wang
et al. 2018], our generator contains an encoding part, a residual
block, and a decoding unit.The input featuremaps go through these

(a) (b)

(c) (d)

Fig. 5. Given the same input sketch (a), image synthesis conditioned on the
feature vectors after manifold projection achieves a more realistic result (d)
than that (c) by image synthesis conditioned on an intermediate sketch (b).
See the highlighted artifacts in both the intermediate sketch (b) and the
corresponding synthesized result (c) by pix2pixHD [Wang et al. 2018].

units sequentially. Similar to [Wang et al. 2018], the discriminator
is designed to determine the samples in a multi-scale manner: we
downsample the input to multiple sizes and use multiple discrim-
inators to process different inputs at different scales. We use this
setting to learn the high-level correlations among parts implicitly.

Two-stage Training. As illustrated in Figure 3, we adopt a two-
stage training strategy to train our network using our dataset of
sketch-image pairs (Section 3.1). In Stage I, we train only theCEmod-
ule, by using component sketches to train five individual auto-encoders
for feature embeddings. The training is done in a self-supervised
manner, with the mean square error (MSE) loss between an input
sketch image and the reconstructed image. In Stage II, we fix the
parameters of the trained component encoders and train the entire
network with the unknown parameters in the FM and IS modules
together in an end-to-end manner. For the GAN in the IS, besides
the GAN loss, we also incorporate a L1 loss to further guide the gen-
erator and thus ensure the pixel-wise quality of generated images.
We use the perceptual loss [Johnson et al. 2016] in the discriminator
to compare the high-level difference between real and generated
images. Due to the different characteristics of female and male por-
traits, we train the network using the complete set but constrain
the searching space into the male and female spaces for testing.
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Fig. 6. Illustration of manifold projection. Given a new feature vector f cs̃ ,
we replace it with the projected feature vector f cproj using K nearest neigh-
bors of f cs̃ .

3.3 Manifold Projection
Let S = {si } denote a set of sketch images used to train the feature
embeddings of face components (Section 3.2). For each component
c , we can get a set of points in the c-component feature space by
using the trained encoders, denoted as F c = { f ci = Ec (sci )}. Al-
though each feature space is 512-dimensional, given that similar
component images are placed closely in such feature spaces, we
tend to believe that all the points in F c are in an underlying low-
dimensional manifold, denoted as Mc , and further assume each
component manifold is locally linear: each point and its neighbors
lie on or close to a locally linear patch of the manifold [Roweis and
Saul 2000].
Given an input sketch s̃ , to increase its plausibility as a human

face, we project its c-th component to Mc . With the locally linear
assumption, we follow the main idea of LLE and take a retrieval-
and-interpolation approach to project the c-th component feature
vector of Ec (s̃c ), denoted as f cs̃ toMc , as illustrated in Figure 3.

As illustrated in Figure 6, given the c-th component feature vec-
tor f cs̃ , we first find the K nearest samples in F c under the Eu-
clidean space. By trial and error, we found thatK=10 is sufficient in
providing face plausibility while maintaining adequate variations.
Let Kc = {sck } (with {sk } ⊂ S) denote the resulting set of K near-
est samples, i.e., the neighbors of s̃c on Mc . We then seek a linear
combination of these neighbors to reconstruct s̃c byminimizing the
reconstruction error. This is equivalent to solving for the interpola-
tion weights through the following minimization problem:

min | | f cs̃ −
∑
k ∈Kc

wc
k · f ck | |

2
2, s .t .

∑
k ∈K

wc
k = 1, (1)

where wc
k is the unknown weight for sample sck . The weights can

be found by solving a constrained least-squares problem for indi-
vidual components independently. Given the solved weights {wc

k },
the projected point of s̃c onMc can be computed as

f cproj =
∑
k ∈Kc

wc
k · f ck . (2)

f cproj is the feature vector of the refined version of s̃c , and can be
passed to the FM and IS modules for image synthesis.

To verify the local continuity of the underlying manifolds, we
first randomly select a sample from S, and for its c-th component
randomly select one of its nearest neighbors in the correspondence
feature space. We then perform linear interpolation between such

Fig. 7. Illustration of linear interpolation between pairs of randomly se-
lected neighboring component sketches (Leftmost and Rightmost) in the
corresponding feature spaces. The middle three images are decoded from
the uniformly interpolated feature vectors.

a pair of component sketches in the c-th feature space, and recon-
struct the interpolated component sketches using the learned c-th
decoder Dc . The reconstructed results are shown in Figure 7. It can
be seen that as we change the interpolation weight continuously, it
results in smooth changes between the consecutive reconstructed
component sketches from a pair of selected sketches. This shows
the feasibility of our descriptor interpolation.

Fig. 8. A screenshot of our shadow-guided sketching interface (Left) for
facial image synthesis (Right). The sliders at the up-right corner can be
used to control the degree of interpolation between an input sketch and a
refined version after manifold project for individual components.

3.4 Shadow-guided Sketching Interface
To assist users, especially those with little training in drawing, in-
spired by ShadowDraw [Lee et al. 2011], we provide a shadow-guided
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Input Sketch wb5 = 0.00 wb5 = 0.25

wb5 = 0.50 wb5 = 0.75 wb5 = 1.00

Fig. 9. Interpolating an input sketch and its refined version (for the “re-
mainder” component in this example) after manifold projection under dif-
ferent blending weight values.wbc = 1means a full use of an input sketch
for image synthesis, while by setting wbc = 0 we fully trust the data for
interpolation.

sketching interface. Given a current sketch s̃ , we first find K (K =
10 in our implementation) most similar sketch component images
from S according to s̃c by using the Euclidean distance in the fea-
ture space.The found component images are then blended as shadow
and placed at the corresponding components’ positions for sketch-
ing guidance (Figure 8 (Left)). Initially when the canvas is empty,
the shadow is more blurry. The shadow is updated instantly for
every new input stroke. The synthesized image is displayed in the
window on the right. Users may choose to update the synthesized
image instantly or trigger an “Convert” command. We show two
sequences of sketching and synthesis results in Figure 18.

Users with good drawing skills tend to trust their own drawings
more than those with little training in drawing. We thus provide a
slider for each component type to control the blending weights be-
tween a sketched component and its refined version after manifold
projection. Let wbc denote the blending weight for component c .
The feature vector after blending can be calculated as:

f cblend = wb
c × f cs̃ + (1 −wbc ) × f cproj . (3)

Feeding f cblend to the subsequent trained modules, we get a new
synthesized image.
Figure 9 shows an example of synthesized results under differ-

ent values of wbc . This blending feature is particularly useful for
creating faces that are very different from any existing samples or
their blending. For example, for the female data in our training set,
most of the subjects have long hairstyles. Always pushing our input
sketch to such samples would not allow us to create short-hairstyle
effects. This is solved by trusting the input sketch for its “remain-
der” component by adjusting its corresponding blending weight.
Figure 10 shows another example with different blending weights
for different components. It can be easily seen that the result with
automatic refinement (lower left) is visuallymore realistic than that

Input Sketch Without Refinementwb = 1.0

Full Refinementwb = 0.0 wb1,2,4 = {0.7, 0.4, 0.3}

Fig. 10. Blending an input sketch and its refined version after manifold
projection for the “left-eye”, “right-eye”, and “mouth” components. Upper
Right: result without any sketch refinement; Lower Left: result with full-
degree sketch refinement; Lower Right: result with partial-degree sketch
refinement.

without any refinement (upper right). Fine-tuning of the blending
weights leads to a result better reflecting the input sketch more
faithfully.

4 EXPERIMENTS
We have done extensive evaluations to show the effectiveness of
our sketch-to-image face synthesis system and its usability via a
pilot study. Below we present some of the obtained results. Please
refer to the supplemental materials for more results and an accom-
panying video for sketch-based image synthesis in action.

Figure 11 shows two representative results where users progres-
sively introduce new strokes to add or stress local details. As shown
in the demo video, running on a PCwith an Intel i7-7700 CPU, 16GB
RAM and a single Nvidia GTX 1080Ti GPU, our method achieves
real-time feedback. Thanks to our local-to-global approach, gener-
ally more strokes lead to new or refined details (e.g., the nose in
the first example, and the eyebrows and wrinkles in the second ex-
ample), with other areas largely unchanged. Still due to the com-
bination step, local editing might still introduce subtle but global
changes. For example, for the first example, the local change of
lighting in the nose area leads to the change of highlight in the
whole face (especially in the forehead region). Figure 18 shows two
more complete sequences of progressive sketching and synthesis,
with our shadow-guided interface.
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Fig. 11. Representative results through progressive sketching for adding
adding details (1st example) and stressing local details (2nd example).

4.1 Usability Study
We conducted a usability study to evaluate the usefulness and effec-
tiveness of our system. 10 subjects (9 male and 1 female, aged from
20 to 26) were invited to participate in this study. We first asked
them to self-assess their drawing skills through a nine-point Lik-
ert scale (1: novice to 9: professional), and divided them into three
groups: 4 novice users (drawing skill score: 1 – 3), 4 middle users
(4 – 6), and 2 professional users (7 – 9). Before the drawing session,
each participant was given a short tutorial about our system (about
10 minutes). The participants used an iPad with iPencil to remotely
control the server PC for drawing. Then each of them was asked
to create at least 3 faces using our system. The study ended with
a questionnaire to get user feedbacks on ease-of-use, controllability,
variance of results, quality of results, and expectation fitness. The ad-
ditional comments on our system were also welcome.
Figure 12 gives a gallery of sketches and synthesized faces by the

participants. It can be seen that our system consistently produce
realistic results given input sketches with different styles and levels
of abstraction. For several examples, the participants attempted to
depict beard styles via hatching and our system captured the users’
intention very well.

Figure 13 shows a radar plot, summarizing quantitative feedbacks
on our system for participant groups with different levels of draw-
ing skills. The feedbacks for all the groups of participants were
positive in all the measured aspects. Particularly, the participants
with good drawing skills felt a high level of controllability, while
they gave slightly lower scores for the degree of result variance. Us-
ing our system, the average time needed for drawing a face sketch
among the participants with different drawing abilities are: 17′14′′
(professional), 3′17′′ (middle) and 2′26′′ (novice). It took much
longer for professionals, since they spent more time sketching and
refining details. For the refinement sliders, themost frequently used
slider was for the “remainder” component (56.69%), which means
for more than half of the results, the “remainder” slider was manip-
ulated. In contrast, for the other components we have 21.66% for
“left-eye”, 12.74% for “right-eye”, 12.10% for “nose” and 19.75% for
“mouth”. For all the adjustments made in the components, partic-
ipants trust the “remainder” component most, with the averaged
confidence 0.78; The least trusted component is “mouth” (0.56);
other component confidences are 0.70 (“left-eye”), 0.61 (“right-eye”)
and 0.58 (“nose”). The averaged confidences implied the impor-
tance of sketch refinement in creating the synthesized faces in this
study.

All of the participants felt that our system was powerful to cre-
ate realistic faces using such sparse sketches. They liked the intu-
itive shadow-guided interface, which was quite helpful for them to
construct face sketches with proper structures and layouts. On the
other hand, some users, particularly those with good drawing skills,
felt that the shadow guidance was sometimes distracting when edit-
ing details. This finding is consistent with the conclusions in the
original ShadowDraw paper [Lee et al. 2011]. One of the profes-
sional usersmentioned that automatic synthesis of face images given
sparse inputs saved a lot of efforts and time compared to traditional
painting software. One professional user mentioned that it would
be better if our system could provide color control.

4.2 Comparison with Alternative Refinement Strategies
To refine an input sketch, we essentially take a component-level
retrieval-and-interpolation approach.We compare thismethodwith
two alternative sketch refinement methods by globally or locally
retrieving the most similar sample in the training data. For fair
comparison, we use the same FM and IS modules for image syn-
thesis. For the local retrieval method, it is the same as our method
except that for manifold projection we simply retrieve the closest
(i.e., top-1 instead of top-K ) component sample in each component-
level feature space without any interpolation. For the global re-
trieval method, we replace the CE module with a new module for
the feature embeddings of entire face sketches. Specifically, we first
learn the feature embeddings of the entire face sketch images, and
given a new sketch we find the most similar (i.e., top-1) sample
in the whole-face feature space. For each component in the glob-
ally retrieved sample image, we then encode it using the corre-
sponding trained component-level encoder (i.e., Ec ), and pass all
the component-level feature vectors to our FM and IS for image
synthesis. Note that we do not globally retrieve real face images,
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Fig. 12. Gallery of input sketches and synthesized results in the usability study.
ACM Trans. Graph., Vol. 39, No. 4, Article 72. Publication date: July 2020.
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(a)

(b)

(c)(d)

(e)

Novice
Middle

Professional

Fig. 13. The summary of quantitative feedback in the usability study. (a)
Ease of use. (b) Controllability. (c) Variance of results. (d)Quality of results.
(e) Expectation fitness.

Input Sketch

(a)

(b)

(c)
Part 1 Part 2 Part 3 Part 4 Image

Input Sketch

(a)

(b)

(c)
Part 1 Part 2 Part 3 Part 4 Image

Fig. 14. Comparisons of using global retrieval (a), component-level retrieval
(b), and our method (essentially component-level retrieval followed by in-
terpolation) (c) for sketch refinement. The right column shows the cor-
responding synthesized results. For easy comparison we overlay input
sketches (in light blue) on top of the retrieved or interpolated sketches by
different methods.

since our goal here is for a fair comparison of the sketch refinement
methods.
Figure 14 shows comparison results. From the overlay of input

sketches and the retrieved or interpolated sketches, it can be eas-
ily seen that the component-level retrieval method returns samples
closer to the input component sketches than the global-retrieval
method, mainly due to the limited sample data. Thanks to the in-
terpolation step, the interpolated sketches almost perfectly fit the

Fig. 15. Two representative sets of input sketches and synthesized results
used in the perceptive evaluation study. From left to right: input sketch,
the results by sketch refinement through global retrieval, local retrieval,
and local retrieval with interpolation (our method).

input sketches. Note that we show the decoded sketches after inter-
polation here only for the comparison purpose, and our conditional
image synthesis sub-network takes the interpolated feature vectors
as input (Section 3.2).

4.3 Perceptive Evaluation Study
As shown in Figure 14 (Right), the three refinement methods all
lead to realistic face images. To evaluate the visual quality and the
faithfulness (i.e., the degree of fitness to input sketches) of synthe-
size results, we conducted a user study.

We prepared a set of input sketches, containing in total 22 sketches,
including 9 from the usability study (Section 4.1) and 13 from the
authors. This sketch set (see the supplementary materials) covered
inputs with different levels of abstraction and different degrees of
roughness. We applied the three refinement methods to each input
sketch to generate the corresponding synthesized results (see two
representative sets in Figure 15).

The evaluationwas done through an online questionnaire. 60 par-
ticipants (39male, 21 female, aged from 18 to 32) participated in this
study. Most of them had no professional training in drawing. We
showed each participant four images including input sketch and
the three synthesized images, placed side by side in a random or-
der. Each participant was asked to evaluate the quality and faithful-
ness both in a seven-point Likert scale (1 = strongly negative to 7 =
strongly positive). In total, to evaluate either the faithfulness or the
quality, we got 60 (participants) × 22 (sketches) = 1,320 subjective
evaluations for each method.

Figure 16 plots the statistics of the evaluation results. We per-
formed one-wayANOVA tests on the quality and faithfulness scores,
and found significant effects for both quality (F(2,63) = 47.26,p <
0.001) and faithfulness (F(2,63) = 51.72,p < 0.001). Paired t-tests
further confirmed that our method (mean: 4.85) led to significantly
more faithful results than both the global (mean: 3.65; [t = −29.77,
p < 0.001] and local (mean: 4.23; [t = −16.34,p < 0.001]) retrieval
methods. This is consistent with our expectation, since our method
provides the largest flexibility to fit to input sketches.

In terms of visual quality our method (mean: 5.50) significantly
outperformed the global retrieval method (mean: 5.37; [t = −3.94,
p < 0.001]) and the local retrieval method (mean: 4.68; [t = −24.60,
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Fig. 16. Box plots of the average quality and faithfulness perception scores
over the participants for each method.

p < 0.001]). It is surprisingly to see that the quality of results by
our methodwas even higher than the global retrieval method, since
we had expected that the visual quality of the results by the global
method and ours would be similar.This is possibly because some in-
formation is lost after first decomposing an entire sketch into com-
ponents and then recombining the corresponding feature maps.

4.4 Comparison with Existing Solutions
We compare our method with the state-of-the-art methods for im-
age synthesis conditioned on sketches, including pix2pix [Isola et al.
2017], pix2pixHD [Wang et al. 2018] and Lines2FacePhoto [Li et al.
2019] and iSketchNFill [Ghosh et al. 2019] in terms of visual qual-
ity of generated faces. We use their released source code but for
fair comparisons we train all the networks on our training dataset
(Section 3.1). The (input and output) resolution for our method and
pix2pixHD is 512 × 512, while we have 256 × 256 for pix2pix and
Lines2FacePhoto according to their default setting. In addition, for
Lines2FacePhoto, following their original paper, we also convert each
sketch to a distance map as input for both training and testing. For
iSketchNFill, we train their shape completion module before feed-
ing it to pix2pix [Isola et al. 2017] (acting as the appearance synthe-
sis module). The input and output resolutions in their method are
256 × 256 and 128 × 128, respectively.
Figure 17 shows representative testing results given the same

sketches as input. It can be easily seen that our method produces
more realistic synthesized results. Since the input sketches are rough
and/or incomplete, they are generally different from the training
data, making the compared methods fail to produce realistic faces.
Although Lines2FacePhoto generates a relatively plausible result given
an incomplete sketch, its ability to handle data imperfections is
rather limited. We attempted to perform quantitative evaluation
as well. However, none of the assessment metrics we tried, includ-
ing Fréchet Inception Distance [Heusel et al. 2017] and Inception
Score [Salimans et al. 2016], could faithfully reflect visual percep-
tion. For example, the averaged values of the Inception Score were
2.59 and 1.82 (the higher, the better) for pix2pixHD and ours, respec-
tively. However, it is easily noticeable that our results are visually
better than those by pix2pixHD.

5 APPLICATIONS
Our system can be adapted for various applications. In this section
we present two applications: face morphing and face copy-paste.

5.1 Face Morphing
Traditional face morphing algorithms [Bichsel 1996] often require
a set of keypoint-level correspondence between two face images to
guide semantic interpolation. We show a simple but effective mor-
phing approach by 1) decomposing a pair of source and target face
sketches in the training dataset into five components (Section 3.2);
2) encoding the component sketches as feature vectors in the cor-
responding feature spaces; 3) performing linear interpolation be-
tween the source and target feature vectors for the corresponding
components; 4) finally feeding the interpolated feature vectors to
the FM and IS module to get intermediate face images. Figure 19
shows examples of face morphing using our method. It can be seen
that our method leads to smoothly transforming results in identity,
expression, and even highlight effects.

5.2 Face Copy-Paste
Traditional copy-paste methods (e.g., [Ge et al. 2018]) use seamless
stitching methods on colored images. However, there will be situ-
ations where the hue of local areas is irrelevant. To address this
issue, we recombine face components for composing new faces,
which can maintain the consistency of the overall color and light-
ing. Specifically, it can be achieved by first encoding face compo-
nent sketches (possibly from different subjects) as feature vectors
and then combining them as new faces by using the FM and ISmod-
ules.This can be used to either replace components of existing faces
with corresponding components from another source, or combin-
ing components from multiple persons. Figure 20 presents several
synthesized new faces by re-combining eyes, nose, mouth and the
remainder region from four source sketches. Our image synthesis
sub-network is able to resolve the inconsistencies between face
components from different sources in terms of both lighting and
shape.

6 CONCLUSION AND DISCUSSIONS
In this paper we have presented a novel deep learning framework
for synthesizing realistic face images from rough and/or incomplete
freehand sketches. We take a local-to-global approach by first de-
composing a sketched face into components, refining its individual
components by projecting them to component manifolds defined
by the existing component samples in the feature spaces, mapping
the refined feature vectors to the feature maps for spatial combi-
nation, and finally translating the combined feature maps to re-
alistic images. This approach naturally supports local editing and
makes the involved network easy to train from a training dataset
of not very large scale. Our approach outperforms existing sketch-
to-image synthesis approaches, which often require edge maps or
sketches with similar quality as input. Our user study confirmed
the usability of our system. We also adapted our system for two
applications: face morphing and face copy-paste.
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Fig. 17. Comparisons with the state-of-the-art methods given the same input sketches (Top Row).

Our current implementation considers individual components
rather independently.This provides flexibility (Figure 4) but also in-
troduces possible incompatibility problems.This issue is more obvi-
ous for the eyes (Figure 21), which are often symmetric. This might
be addressed by introducing a symmetry loss [Huang et al. 2017]

or explicitly requiring two eyes from the same samples (similar to
Figure 20).

Ourwork has focused on refining an input sketch component-by-
component. In other words our system is generally able to handle
errors within individual components, but is not designed to fix the
errors in the layouts of components (Figure 21). To achieve proper
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Fig. 18. Two sequences of progressive sketching (under shadow guidance) and synthesis results.

Fig. 19. Examples of face morphing by interpolating the component-level feature vectors of two given face sketches (Leftmost and Rightmost are correspond-
ing synthesized images).

layouts, we resort to a shadow-guided interface. In the future, we
are interested in modeling spatial relations between facial compo-
nents and fixing input layout errors.
Our system takes black-and-white rasterized sketches as input

and currently does not provide any control of color or texture in

synthesized results. In a continuous drawing session, small changes
in sketches sometimesmight cause abrupt color changes.Thismight
surprise users and is thus not desirable for usability. We believe this

ACM Trans. Graph., Vol. 39, No. 4, Article 72. Publication date: July 2020.



DeepFaceDrawing: Deep Generation of Face Images from Sketches • 72:15

Fig. 20. In each set, we show color image (Left) of the source sketches (not shown here), a new face sketch (Middle) by directly recombining the cropped
source sketches in the image domain, and a new face (Right) synthesized by using our method with the recombined sketches of the cropped components
(eyes, nose, mouth, and remainder) as input.

Fig. 21. A less successful example. The eyes in the generated image are of
different colors. For the sketched mouth, it is slightly below an expected
position, leading to a blurry result for this component.

can be potentially addressed by introducing a color control mech-
anism in generation. For example, we might introduce color con-
straints by either adding them in the input as additional hints or
appending them to the latent space as additional guidance. In addi-
tion, adding color control is also beneficial for applications such as
face morphing and face copy-and-paste.
Like other learning-based approaches, the performance of our

system is also dependent on the amount of training data. Although
component-level manifolds of faces might be low dimensional, due
to the relatively high-dimensional space of our feature vectors, our
limited data only provides very sparse sampling of themanifolds. In
the future we are interested in increasing the scale of our training
data, and aim to model underlying component manifolds more ac-
curately. This will also help our system to handle non-frontal faces,
faces with accessories. It is also interesting to increase the diversity
of results by adding random noise to the input. Explicitly learning
such manifolds and providing intuitive exploration tools in a 2D
space would be also interesting to explore.
Our current system is specially designed for faces by making use

of the fixed structure of faces. How to adapt our idea to support

the synthesis of objects of other categories is an interesting but
challenging problem.
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