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Abstract—This paper presents an approach for reconstructing polyhedral objects from single-view line drawings. Our
approach separates a complex line drawing representing a manifold object into a series of simpler line drawings, based
on the degree of reconstruction freedom (DRF). We then progressively reconstruct a complete 3D model from these
simpler line drawings. Our experiments show that our decomposition algorithm is able to handle complex drawings which
are challenging for the state of the art. The advantages of the presented progressive 3D reconstruction method over the
existing reconstruction methods in terms of both robustness and efficiency are also demonstrated.
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1 INTRODUCTION

A line drawing is the simplest and most direct way of
illustrating a 3D object. The human vision system

is able to interpret 2D line drawings as 3D objects
with no difficulty. Emulating this ability is an important
but challenging research topic for machine vision. 3D
reconstruction from line drawings benefits various appli-
cations such as the design of flexible sketching interfaces
for conceptual designers [1]–[6], and sketch-based 3D
object retrieval [7]–[9]

Similar to previous 3D reconstruction methods in [3],
[10]–[14], we tackle the problem of 3D reconstruction
from single line drawings with an optimization-based ap-
proach. Optimization-based 3D reconstruction methods
determine the depth values (z-coordinates) of the vertices
of a line drawing from the solution that optimizes a
certain objective function. The main problem with the
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Fig. 1: Our 3D reconstruction pipeline. (a) and (b) show
that a line drawing is decomposed into three parts, and
(c) and (d) illustrate the progressive reconstruction which
sequentially and dependently reconstructs the 3D shapes
from the three parts. Note that the good initial depths
of the vertices circled by � in (c) are estimated from
the depths of the vertices marked by ⃝ of the already
reconstructed middle part.

existing methods is that they become less robust and
less efficient when a line drawing is complex.

This work focuses on improving the performance
of optimization-based 3D reconstruction from complex
line drawings. We intend to avoid the search in a
high-dimensional space in the optimization process.
We present an efficient degree-of-reconstruction-freedom
(DRF) based algorithm (Section 4), which decomposes a
complex line drawing into a series of simpler parts with
small DRFs (Figures 1(a) and (b)). As we will show,
compared to the existing line drawing decomposition
technique [13], our algorithm is much more efficient and
is able to successfully handle more line drawings with
high complexity.
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In addition, we propose an estimate-and-optimize
strategy for progressive reconstruction of the separated
simpler parts (Section 5). Our method starts with 3D
reconstruction of an initial part (Fig. 1(c)), and sequen-
tially reconstructs other parts (Fig. 1(d)) based on the
already reconstructed parts. The latter provides a good
initial setting for the reconstruction of subsequent ones,
thus greatly improving the robustness of optimization-
based 3D reconstruction from line drawings.

2 RELATED WORK

Computational interpretation of line drawings has
spanned more than four decades. A full review of this
topic is beyond the scope of this paper. See [15]–[17]
for insightful surveys. The earliest work towards 3D
reconstruction from single line drawings is line labeling,
which focuses on finding a set of consistent labels from a
line drawing and testing its correctness and realizability
[18]–[20]. Line labeling is useful to detect some percep-
tual relations in a line drawing, but it does not explicitly
give the 3D shape represented by the line drawing.
The methods based on linear programming [21]–[23]
reconstruct a 3D model by solving a linear system
which is built from a set of geometrical conditions that
the model must fit. In general, linear programming has
difficulty tolerating sketching errors that often exist in a
line drawing.

Modern methods of 3D reconstruction from line draw-
ings are often optimization based. The seminal work by
Marill [14] presented a very simple regularity for 3D
reconstruction, i.e., minimizing the standard deviation of
the angles (MSDA) in the reconstructed objects so that a
2D line drawing can be inflated into a 3D shape. Moti-
vated by MSDA, Brown and Wang [24] proposed to min-
imize the standard deviation of the segment magnitudes
(MSDSM), and Shoji et al. [25] presented the criterion
of minimizing the entropy of angle distribution (MEAD).
MSDA, MSDSM, and MEAD can only recover sim-
ple objects from line drawings. Leclerc and Fischler’s
method [11] considers not only MSDA but also the
planarity constraint on the faces of the object (planarity
constraint is a powerful property and many methods
have been proposed to find faces from a line drawing
[26]–[31]). This method performs better than MSDA,
MSDSM, and MEAD. Later, Lipson and Shpitalni [3]
extended Leclerc and Fischler’s method by using more
constraints like line parallelism, line verticality, isometry,
etc., enabling the reconstruction of more complex objects
than Leclerc and Fischler’s. Based on the works [3], [11],
[14], Turner et al. recovered simple planar 3D objects
from scenes [32]. Shesh and Chen applied Lipson and
Shpitalni’s algorithm to their sketching system in [33].
Liu et al. proposed a plane-based optimization method

Fig. 2: Illustration of the reconstruction method in [13]
.

in [12] which finds desired objects in a much lower
dimensional search space by enforcing a set of linear
constraints on the unconstrained optimization problem.
Their method can tackle 3D reconstruction of more
complex objects, but fail to obtain an expected 3D object
when the degree of reconstruction freedom of an object
is large [13].

Our work might be the most relevant to that by
Liu et al. [13], which also presented a line drawing
decomposition algorithm. As illustrated in Fig. 2, their
algorithm firstly decomposes a line drawing into a set
of simpler line drawings (LD1 and LD2 in Fig. 2(b))
along internal faces (f∗, marked in red in Fig. 2(a)),
then reconstructs 3D shapes (O1 and O2 in Fig. 2(c))
from the resulting simpler line drawings independently,
and finally merges the 3D shapes together and fine-tunes
the merged 3D model. By decomposing a complex line
drawing into simpler line drawings, their method avoids
the search in a high dimension space.

One of the limitations of the method in [13] is that the
decomposition algorithm based on finding internal faces
is NP-complete. To make this algorithm run in tolerable
time, a predefined maximum search depth has to be
set. Therefore, it cannot find an internal face when the
number of its edges is larger than the threshold. Another
deficiency of [13] is that the 3D shapes are reconstruct-
ed independently from the decomposed line drawings,
without using the geometrical relationships between the
decomposed line drawings. This might cause artifacts in
the subsequent merging step, e.g., non-planar faces in
the complete model in Fig. 2(d) after merging O1 and
O2 via f∗

1 and f∗
2 . This is mainly because while f∗

1 and
f∗
2 are consistent in the decomposed line drawings, the

corresponding faces in O1 and O2 might become incon-
sistent due to independent reconstruction. This justified
their extra fine-tuning step, which, however, does not
always work well and is time consuming.

Our progressive reconstruction method based on
an estimate-and-optimize strategy shares some resem-
blances to those proposed in [3], [10], and [34], which
employ certain geometrical properties to provide an
initial guess for the subsequent optimization-based 3D
reconstruction. For example, to obtain a preliminary
approximation of the object, Lipson and Shpitalni [3]
assume that the edges in the line drawing have three main
axis directions. The approach of Company et al. [10] is
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Fig. 3: (a) A line drawing. (b) Face circuits of the line
drawing in (a). (c) Two artificial lines {x,w} and {u, v}.
(d) Two separated line drawings after preprocessing the
line drawing in (c).

applicable only to the input line drawing representing
a (quasi-)normalon, while the method proposed by Lee
and Fang [34] requires the availability of at least one
cubic corner in a desired object. Our approach does
not require such special geometrical properties of an
underlying object in the line drawing. This is achieved
by decomposing the line drawing into multiple parts and
progressively optimizing each part, instead of solving the
optimization problem on the entire line drawing. Our
approach is thus more general and is applicable to a
wider class of objects.

3 ASSUMPTIONS, PREPROCESSING, AND
TERMINOLOGY

Similar to [13], our paper focuses on 3D reconstruction
of a large class of common planar-faced solids, called
manifolds. On the surface of a manifold, every point has
a neighborhood topologically equivalent to an open disk
in the 2D Euclidean space [35]. A line drawing in this
paper is assumed to be an orthographic projection of the
edges of a 3D planar-faced manifold in a generic view,
with hidden lines and vertices visible.

Preprocessing. The face topology is very crucial
for the line drawing decomposition and reconstruction.
Given a line drawing, we use the algorithm in [28] to
find its face topology. Here, the face topology denotes
the set of circuits that represent all the faces of the 3D
object. For example, the line drawing in Fig. 3(a) has
15 faces, as shown in Fig. 3(b). See another example
in Figures 4(c) and (d). Artificial lines (see examples in
Fig. 3(c)), added by the designer, are used to indicate the
coplanarity of two circuits in solid modeling [36], [28].
Detecting artificial lines is an easy task according to the
connection between an artificial line and the edges it
connects to [13]. After removing the artificial lines, a line
drawing becomes two or more separated line drawings
(Fig. 3(d)).

For better understanding of the contents in the follow-
ing sections, we here give the definitions of the terms that
appear in the rest of the paper.

Definition 1. Let a line drawing be the projection
of a 3D object. The minimum number of depths (z-
coordinates) that can uniquely define this 3D object is

Fig. 4: Illustration of some terms. (a) A line drawing
representing a hexahedron. (b) Two 4DRF parts of the
line drawing in (a), where the part LDp2 is a 4DRF-
extended part of LDp1 . (c) Another line drawing which
has ten faces. (d) Ten identified faces of the line drawing
in (c). (e) Two neighboring parts LDp1 = {f1∪f2∪f3∪
f4 ∪ f5} and LDp2 = {f6 ∪ f7 ∪ f8 ∪ f9 ∪ f10}. Once
the 3D vertices of LDp1 are recovered, the part LDp2 is
the largest-conditional-1DRF neighboring part of LDp1 .

called the degree of reconstruction freedom (DRF) for
the line drawing.

This definition comes from [12], where DRF is used to
find a search space for 3D reconstruction. Instead, in our
paper, it is used to decompose complex line drawings.
Now, let us analyze the DRF for a simple line drawing
shown in Fig. 4(a). Assume that the line drawing is the
precise projection of a 3D planar-faced object. Thus, all
3D vertices on the same face are coplanar. For example,
all the vertices v1−4 are on the plane defined by a1x+
b1y + c1 − z = 0, which passes through the face f1 =
(v1, v2, v3, v4). Next, we can show that the 3D object is
defined if z1, z2, z3, and z5 are given, where zi is the
depth value of vertex vi. When z1, z2 and z3 are known,
the 3D plane a1x+b1y+c1−z = 0 is defined. Then, z4
can be calculated by z4 = a1x4 + b1y4 + c1. Since z4 is
known and z1 and z5 are given, v8 is determined because
it lies on the plane defined by v1, v5 and v4. Analogously,
the depths of all other vertices can be determined. On
the other hand, it is obvious that the given depth values
of only three vertices are not sufficient to determine a
unique 3D object for this line drawing. Therefore the
DRF for this drawing is 4.

Definition 2. Let a line drawing be LD = (V, E ,F)
where V , E , and F are the sets of vertices, edges, and
faces of LD, respectively. A partial line drawing, or a
part of LD is formed by one or more connected faces
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Fig. 5: Examples of 4DRF line drawings.

denoted by LDp = (Vp, Ep) with Vp ⊆ V and Ep ⊆ E .
A neighboring face of LDp is a face that has at least
one edge (but not all) in LDp. Given two parts LDp1

and LDp2 , let F (LDp1) and F (LDp2) be the sets of
the faces in LDp1 and LDp2 , respectively; let E(LDp1)
and E(LDp2) be the sets of the edges in LDp1 and
LDp2 , respectively. LDp1 and LDp2 are called two
neighboring parts if F (LDp1) ∩ F (LDp2) = ∅ and
E(LDp1) ∩ E(LDp2) ̸= ∅.

Fig. 4(b) shows two parts of the line drawing in
Fig. 4(a). The face f1 in LDp2 is a neighboring face
of the part LDp1 = {f4 ∪ f5}. In Fig. 4(e), LDp1 and
LDp2 are two neighboring parts, which share the same
circuit (in blue) but share no face.

Definition 3. A 4DRF part is a part whose DRF is
four. A manifold is called a 4DRF manifold if the DRF
for its line drawing is four.

Fig. 5 shows four examples of 4DRF line drawings.
Their complexities vary, though they have the same DRF.
The line drawing in Fig. 5(c) has only two faces. It is the
simplest 4DRF line drawing. The line drawing shown in
Fig. 5(a) has 6 faces and is more complex. It is easy
to show that a 4DRF line drawing or 4DRF partial line
drawing has at least two faces. The cuboid represented
by the line drawing in Fig. 5(a) is a 4DRF manifold.

Definition 4. A 4DRF-extended part of a 4DRF
part LDp, denoted as 4DRFExt(LDp), is the part
which contains LDp and one neighboring face of LDp,
which has two non-collinear edges in LDp. The largest-
4DRF-extended part of a 4DRF part LDp, denoted as
Largest4DRFExt(LDp), is the 4DRF part which has
the largest number of faces among the parts, each of
which contains LDp.

Note that the DRFs of LDp, 4DRFExt(LDp),
and Largest4DRFExt(LDp) are all 4. As shown in
Fig. 4(b), given a part LDp1 (LDp1 = {f4 ∪ f5}), a
4DRF-extended part of LDp1 is the partial line drawing
which contains all the faces in LDp1 and the face
f1, since f1 passes through two non-collinear edges
in LDp1

. For a 4DRF part of a line drawing, it may
have no 4DRF-extended part. As shown in Fig. 4(e),
each neighboring face of {f3 ∪ f7} shares less than two
non-collinear edges with {f3 ∪ f7} and hence the part
{f3 ∪ f7} has neither 4DRF-extended part nor largest-
4DRF-extended part. It is worth noting that a largest-

4DRF-extended part does not necessarily represent a
manifold, though this work focuses the decomposition
of line drawings representing manifolds only.

Given a 4DRF part LDp, the following procedure
4DRFExt F (LDp) (Procedure 1) obtains one possible
4DRF-extended part:

Procedure 1 4DRFExt F (LDp)
1. LDtmp ← LDp;
2. add a neighboring face of LDp to LDtmp

if this face has two non-collinear edges in LDtmp;
3. 4DRFExt(LDp)← LDtmp;
Procedure 2 Largest4DRFExt F (LDp)
1. LDtmp ← LDp;
2. LD′

tmp ← 4DRFExt F (LDtmp);
3. if LD′

tmp ⊃ LDtmp

4. LDtmp ← LD′
tmp; goto Step 2;

5. Largest4DRFExt(LDp)← LD′
tmp.

Obviously, the output of 4DRFExt F (LDp)
is a valid 4DRF-extended part of LDp only if
4DRFExt F (LDp) ⊃ LDp ( ̸= LDp ) is satisfied.
Based on 4DRFExt F (LDp), starting from a 4DRF
part, called a seed, Largest4DRFExt(LDp) can be
obtained by the procedure Largest4DRFExt F (LDp)
(Procedure 2).

Definition 5. A neighboring part of a part LDp is
called a conditional-1DRF neighboring part of LDp if
its DRF is 1 when the 3D coordinates of all the vertices
of LDp are known. A conditional-1DRF neighboring
part of LDp is called the largest-conditional-1DRF
neighboring part of LDp if it has the maximum number
of faces among all the conditional-1DRF neighboring
parts of LDp. Given a neighboring face f of LDp, the
largest-conditional-1DRF neighbor part of LDp contain-
ing f is denoted as LargestCon1DRF (LDp, f).

We take the line drawing shown in Fig. 4(e) to
illustrate the two terms in Definition 5. Assume that a
3D shape has been reconstructed from the part LDp1 =
{f1 ∪ f2 ∪ f3 ∪ f4 ∪ f5}. From Definition 2, there
exist multiple neighboring parts of LDp1 , such as {f6},
{f6 ∪ f7}, and LDp2 = {f6 ∪ f7 ∪ f8 ∪ f9 ∪ f10}. All
of them are also conditional-1DRF neighboring parts of
LDp1 , since when the 3D shape of LDp1 is known, the
depth of one vertex (not in LDp1

) of such a part can
uniquely define the 3D position of this part.

Given a part LDp and one of its neighbor faces f ,
LargestCon1DRF (LDp, f) can be obtained by the
following procedure LargestCon1DRF F (LDp, f):
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Procedure 3 LargestCon1DRF F (LDp, f)
1. LDtmp ← f ;
2. LD′

tmp ← LDtmp;
3. for each neighboring face fj of {LDp ∪ LDtmp} do
4. if fj has two non-collinear edges in {LDp ∪ LDtmp}
5. LD′

tmp ← {LD′
tmp ∪ fj};

6. end for
7. if LD′

tmp ⊃ LDtmp

LDtmp ← LD′
tmp; goto Step 2;

8. LargestCon1DRF (LDp)← LD′
tmp.

In Fig 4(e), arbitrarily selecting a neighboring face of
LDp1 , say f7, we have LargestCon1DRF
(LDp1 , f7) = LDp2 by running the procedure
LargestCon1DRF F (LDp1 , f7) (Procedure 3) .

Definition 6. A dual graph G of a line drawing
LD is a graph whose vertices denote the faces of LD,
and each of whose edges connects two vertices that are
neighboring faces of LD.

An example of a line drawing and its corresponding
dual graph can be found in Fig. 7(a) and (b), respectively.

4 DRF-BASED DECOMPOSITION

We first introduce the details of our DRF-based line
drawing decomposition algorithm and then discuss its
computational complexity.

4.1 Algorithm
We observed that many man-made objects, like the house
model shown in Fig. 6, are usually formed by simpler
manifolds whose DRFs are four. This motivated us to
separate a complex line drawing into a set of 4DRF
parts. The resulting 4DRF parts are much less complex
and usually have regular geometry, making their 3D
reconstruction much easier.

However, for such complex line drawings, finding
parts with low DRFs corresponding to manifolds is not
trivial. Liu et al. [13] proposed to decompose a complex
line drawing from its internal faces where simpler objects
are glued. Unfortunately, their algorithm to find the
internal faces from a line drawing is NP-complete. To
make it run in a reasonable time, a predefined maximum
search depth has to be set. As a result, the internal faces
cannot be found when the numbers of their edges are
larger than the threshold.

Different from [13], our work utilizes a DRF-based
algorithm to decompose a line drawing into a set of parts
which are approximate to the 4DRF parts representing
manifolds. More specifically, our algorithm sequentially
decomposes a line drawing into a set of largest-4DRF-
extended parts and largest-conditional-1DRF neighbor-
ing parts. Fig. 6 shows a decomposition result by our
algorithm, compared to that by the algorithm in [13].
For this example, both the algorithms lead to successful

Fig. 6: Illustration of the proposed decomposition algo-
rithm. (a) A 2D line drawing representing a manifold
object. (b) 3D object corresponding to (a). (c) Parts
obtained by the algorithm in [13], which decomposes
a line drawing along the internal faces of the object. (d)
Parts obtained by our DRF-based algorithm.

Algorithm 1 DRF-based line drawing decomposition.
Input: A line drawing G0 = (V0, E0,F0) where V0, E0, and
F0 are the sets of vertices, edges, and faces, respectively.
1. build the dual graph G = (V, E) of G0;
2. Label(v)← 0 for every vertex v ∈ V; i← 0; Vu ← ∅;
Eu ← ∅; let Gu = (Vu, Eu);

3. flagl4 ← 0; find a set of seeds Gsp from G−Gu;
4. if Gsp = ∅ goto Step 9;
5. for each seed Gspj in Gsp do
6. (a) Gtmp ← 4DRFExt F (Ĝspj ) (Procedure 1);
7. (b) if Gtmp ⊃ Gspj then

flagl4 ← 1 and goto Step 10;
end if

8. end for
9. if flagl4 = 0 then

i← i+ 1, G′
pi ← G−Gu, and goto Step 22;

end if
10. G′

pi ← Largest4DRFExt F (Ĝtmp) (Procedure 2);
11. i← i+ 1; Label(v)← 1 for every vertex v ∈ G′

pi ;
12. add v to Vu for every vertex v ∈ G′

pi ; add e to Eu for
every edge e ∈ G′

pi ;
13. if Gu = G goto Step 22;
14. AdjV er(Gu)← all the neighboring vertices of Gu;

flaglc1 ← 0;
15. for each vertex vj ∈ AdjV er(Gu) do
16. check if there is another neighboring face of Ĝu in

G0 containing two non-collinear edges in {Ĝu ∪ v̂j}.
If yes, flaglc1 ← 1 and goto Step 19;

17. end for
18. if flaglc1 = 0, goto Step 3;
19. G′

pi ← LargestCon1DRF F (Ĝu, v̂j) (Procedure 3);
20. i← i+ 1; Label(v)← 1 for every vertex v ∈ G′

pi ;
21. add v to Vu for every vertex v ∈ G′

pi ; add e to Eu for
every edge e ∈ G′

pi ; goto Step 13;
22. if i > 1 Output: (Ĝ′

p1 , ..., Ĝ
′
pi) else Output: Ĝ′

p1 .
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Fig. 7: Illustration of Algorithm 1. (a) A line drawing
with 9 faces which are denoted by the 9 numbers each
enclosed by a blue pattern whose shape is similar to
its corresponding face in the line drawing. (b) The dual
graph of (a). (c) A pair of adjacent vertices (1 and 5) are
selected to find the largest-4DRF-extended part. (d) The
largest-4DRF-extended part {1, 2, 3, 4, 5} obtained by
Step 8 in Algorithm 1. (e) The largest-conditional-1DRF
neighboring part {6, 7, 8, 9} of the part {1, 2, 3, 4, 5}.
In (e), all the 9 vertices are labeled by 1. (f) Two
decomposed parts.

but slightly different decompositions. We will give a
thorough evaluation of these two algorithms in Section 6.

The detailed decomposition steps are summarized in
Algorithm 1 and illustrated in Figure 7. In Step 1, the
dual graph G (Fig. 7(b)) of the input line drawing G0

is built to facilitate the design of the decomposition
algorithm. Gu in Step 2 is a subgraph of G, and is used
to keep the currently decomposed parts. We use a binary
label Label(v) for each vertex v in G to denote whether
v is in the obtained parts in Gu.

In Steps 2–22, to have a concise description, a sign
and its over-hatted sign are used to denote the two corre-
sponding entities in G and G0, respectively. For example,
vj is a vertex in G while v̂j is the corresponding face
in G0; Gspj

denotes two adjacent vertices in G while
Ĝspj

denotes the corresponding two adjacent faces in
G0. G−Gu denotes the remaining subgraph by removing
Vu and the edges connecting the vertices in Vu from G.

Through Steps 3–12 our algorithm finds the parts be-
longing to largest-4DRF-extended parts. A binary label
flagl4 is used to check if a largest-4DRF-extended part
can be found. More specifically, in Step 3 a seed set
Gsp is constructed for the generation of a largest-4DRF-
extended part. In this step, all the pairs of adjacent faces,
each pair sharing a trihedral vertex (i.e., a vertex passed

through by three faces) in Ĝ−Gu, are selected as the
seeds and added into Gsp. See an example of such a
seed (adjacent vertices 1 and 5) in Fig. 7(c). We use such
pairs as the seeds since a trihedral vertex usually exists
in simple manifolds that are the targeted decomposition
results, while a vertex passed through by more than three
faces (say, v5 in Fig. 4(c)) often indicates a place where
two simple manifolds are merged into a complex man-
ifold. The part growing step (Largest4DRFExt F )
starting from a seed usually gives a desired largest-
4DRF-extended part, e.g., {1, 2, 3, 4, 5} in Fig. 7(d).
Note that if the seed set constructed in Step 3 is empty,
Algorithm 1 will output Ĝ−Gu as the last part and
stop.

Steps 14–17 check whether Gu has a largest-
conditional-1DRF neighboring part using a binary label
flaglc1. According to flaglc1 in Steps 16 and 18, the
algorithm goes on to find a largest-conditional-1DRF
neighboring part of Gu (Steps 19–21) or another largest-
4DRF-extended part (Steps 3–12). Fig. 7(e) shows a
largest-conditional-1DRF neighboring part {6, 7, 8, 9} of
the part {1, 2, 3, 4, 5}. Fig. 7(f) gives two decomposed
parts resulting from Algorithm 1.

4.2 Complexity

We now analyze the complexity of the decomposition
algorithm. Suppose a line drawing G0 has Nv vertices,
Ne edges, and Nf faces. Assume that every face in G0

has less than Ke edges or adjacent faces, and G0 is
decomposed into Kp parts. Then the average number of
faces in a part is Nf/Kp.

The main computation is carried out by Steps 3–21.
In Step 3, the algorithm tests each pair of two adjacent
faces in a subgraph of G0 (i.e., G−Gu in G) and adds
those sharing a trihedral vertex into the set of seeds.
This step takes less than O(KeNf ) time and obtains
less than KeNf seeds. The number of seeds determines
the number of loops in Steps 6 and 7. Step 6 calls the
procedure 4DRFExt F () to test whether the current
seed can grow or not. In procedure 4DRFExt F (),
to test if a given neighboring face f of LDp has two
non-collinear edges in LDp, we first find all the edges
in f that are also in LDp and then check if there
are two non-collinear edges among them. The former
and the latter are bounded by O(KeNe) and O(Ke

2),
respectively. Therefore the time of one execution of
4DRFExt F () is bounded by O(Nf (KeNe+Ke

2)) =
O(KeNeNf ). Considering Step 7 takes much less time
than Step 6, the computation of Steps 5–8 is bounded
by O(Ke

2NeNf
2). The main computation of Steps 4–

9 is determined by Steps 5–8, and thus the computa-
tion of Steps 4–9 is also bounded by O(Ke

2NeNf
2).

The main computation of Steps 10–13 is determined
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by the procedure Largest4DRFExt F () in Step 10,
which is approximately equal to repeated execution of
4DRFExt F () for Nf/Kp times. Thus, the time of
one execution Largest4DRFExt F () is bounded by
O(KeNeNf

2/Kp). Then, the total time of obtaining
a largest-4DRF-extended part (Steps 3–13) is bounded
by O(KeNf ) +O(Ke

2NeNf
2) +O(KeNeNf

2/Kp) =
O(Ke

2NeNf
2).

Next, we discuss the complexity of Steps 14–21.
In these steps, the algorithm first checks if Gu has a
conditional-1DRF neighboring part or not (Steps 15–
17), and then finds a conditional-1DRF neighboring part
(Steps 19–21) or another largest-4DRF-extended part
(Steps 3–13). The complexity of Steps 14–21 is thus
approximate to the time taken by Steps 3–13. Finally,
the algorithm conducts Steps 3-13 or Steps 14–21 for
Kp times. Considering Ke is constant, we have the com-
plexity of Algorithm 1 bounded by O(K2

eNeNf
2Kp) =

O(KpNeNf
2), which is polynomial.

In fact, from our experiments, we find that the time
spent by Algorithm 1 and by the line drawing pre-
processing step (typically less than 1 second), can be
almost neglected compared to the time taken by the 3D
reconstruction algorithm (see Fig. 12(a); typically from
10 to 30 seconds).

5 PROGRESSIVE 3D RECONSTRUCTION

DRF-based decomposition, introduced in the previous
section, results in a set of simpler line drawings. A
straightforward solution to recover a 3D model from
such line drawing parts is to first reconstruct 3D shapes
from individual parts of the line drawing independently
and then integrate the reconstructed 3D shapes into a
complete 3D model. However, as shown in Fig. 2(d),
such an approach might easily cause reconstruction
artifacts. To address this problem we introduce a novel
progressive 3D reconstruction algorithm. Below we first
give the algorithm details in Section 5.1 and then the
implementation details in Section 5.2 and 5.3.

5.1 Algorithm
Our algorithm takes an estimate-and-optimize strategy
and sequentially reconstructs 3D shapes from line draw-
ing parts one by one based on already reconstructed
parts. The algorithm is summarized in Algorithm 2.

Due to the progressive nature our algorithm would
accumulate reconstruction errors. To reduce such errors
we use the following scheme to derive a reconstruction
sequence (Step 2), i.e., an ordered list of the decomposed
parts, denoted as (Gp1

, . . . , GpN
), where N is the num-

ber of the decomposed parts of the input line drawing.
As illustrated in Fig. 8 we first build a graph G′ with
each vertex representing a line drawing part and each

Fig. 8: Illustration of determining the reconstruction
sequence. (a) and (b) An input line drawing and its
decomposed parts. (c) A graph G′ built where each
vertex represents a part and each edge represents the
connection between two neighboring parts. (d) The
determined reconstruction sequence (Gp1 , ...Gp5) =
(G′

p3
, G′

p4
, G′

p5
, G′

p2
, G′

p1
).

edge connecting two neighboring parts. To determine
the initial part Gp1 , we estimate the reconstruction error
starting from each vertex vG′

pi
(i.e., Ĝ′

pi
of Algorithm 1)

and take the one with the minimum error as Gp1 .
Mathematically it is formulated as follows:

Gp1 = argmin
i

Err(vG′
pi
) =

N∑
j=1,j ̸=i

dis(vG′
pi
, vG′

pj
),

(1)
where dis(vG′

pi
, vG′

pj
) denotes the length of the shortest

path between two vertices in the graph G′, which makes
Gp1 roughly correspond to the center of the graph G′.
In case there are two or more vertices with the same
minimum Err, we pick Gp1 as the one corresponding
to the part with the maximum Nppe/Ne, where Nppe

denotes the number of pairs of parallel edges in a part,
and Ne denotes the number of the edges in the part,
since a part with more parallel lines usually corresponds
to a more regular 3D shape and its reconstruction is
thus more robust. We determine the order of the rest of
the parts using classic breadth-first search in G′, starting
from the vertex corresponding to Gp1 .

Algorithm 2 3D reconstruction from a complex line
drawing.

1. decompose an input line drawing with Algorithm 1;
2. determine the reconstruction sequence (Gp1 , . . . , GpN );
3. reconstruct a 3D Op1 shape from Gp1 ;
4. for i = 2 to N do
5. a) estimate a rough 3D shape Õpi with the information

of {Gp1 , . . . , Gpi} ∪ {Op1 , . . . , Opi−1};
6. b) reconstruct a 3D shape Opi for Gpi based on Õpi

∪{Op1 , . . . , Opi−1} and {Gp1 , . . . , Gpi};
7. end for

In Step 3, a 3D shape is reconstructed from the
initial part Gp1

. Steps 4–7 sequentially reconstruct 3D
shapes from the subsequent parts, where Õpi is the
rough 3D shape estimated from the 3D information
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of the reconstructed 3D shapes {Op1 , Op2 , . . . , Opi−1}
and {Gp1 , . . . , Gpi}. With Õpi , {Op1 , . . . , Opi−1}, and
{Gp1 , . . . , Gpi}, a 3D shape Opi is recovered by an
optimization-based algorithm. As we will show in Sec-
tion 6 that, by estimating rough 3D shapes first, the
reconstruction algorithm usually converges much faster.

Step 6 can be achieved by adapting existing
optimization-based 3D reconstruction algorithms like
those proposed in [3], [10], and [12]. Specifically, Opi

can be reconstructed by minimizing the following objec-
tive function:

Φ(Zpi
) =

Nc∑
j=1

wjϕj(Zp1
, . . . ,Zpi−1

,Zpi
), (2)

where Zpi
is the set of the z-coordinates of the

vertices in the ith part which are unknown and their
initial values are obtained from Õpi , Zp1 , . . . ,Zpi−1

denote the known z-coordinates of the vertices in the
i − 1 already reconstructed parts, ϕj , 1 ≤ j ≤ Nc,
are the Nc constraints, i.e., image regularities, derived
from all the i parts, and wj is a weighting factor. We
adopt the most commonly used image regularities [3],
[10]–[12], including face planarity, line parallelism, line
collinearity, skewed facial symmetry, isometry, corner
orthogonality, and minimizing the standard deviation of
angles in the reconstructed objects.

Below we give the implementation details of how to
reconstruct an initial 3D shape (Step 3) in Section 5.2,
and how to estimate an initial 3D shape for a subsequent
part (Step 5) in Section 5.3

5.2 3D Reconstruction of Initial Part

It is well known that the robustness of optimization-
based methods for 3D reconstruction from line draw-
ings is often sensitive to the initial settings of the z-
coordinates of the vertices [12]. There is no available
3D shape to guide 3D reconstruction from the initial
part Gp1 . For robustness we independently reconstruct
a 3D shape from Gp1 with different initial settings:
randomized initialization of z-coordinates for multiple
times ( [11], [12], [13]) and initial zero setting of z-
coordinates ( [14]). The reconstruction result correspond-
ing to the minimum value of the objective function
Φ(Zp1) =

∑Nc

j=1 wjϕj(Zp1) (part of Equation (2)) is
selected as the final 3D shape of the initial part. In
our experiments, we find that ten randomizations plus
one zero setting are sufficient to obtain a good 3D
shape. It is worth mentioning that if the initial part is
a (quasi-)normalon [10] or has a cubic corner [10], [34],
[37], there exist more advanced algorithms to derive a
more effective initial approximation for the optimization
process.

5.3 3D Rough Shape Estimation of Subsequent
Parts

When the z-coordinates of the vertices of a line drawing
have been partially reconstructed, various image regular-
ities which capture 3D geometrical relationships between
parts can be used to estimate a rough shape close to the
optimal one for a subsequent part, as illustrated in Fig. 9.
For example, if two edges in two line drawing parts
under orthographic projection are parallel, they should
be parallel in 3D space too.

From Section 3, we know that when the 3D shape of
a part has been reconstructed, the DRF of its neighbor-
ing part reduces to one. In our derived reconstruction
sequence, it is easy to see that Gpi is a neighboring part
of {Gp1 , . . . , Gpi−1}. Thus, the 3D shape of Gpi can be
derived given a known depth (z-coordinate) of one of
its free vertices which is in Gpi but not in the already
reconstructed parts.

As illustrated in Figs. 9(b)-(e), we use image regu-
larities [3], [10] including line collinearity (IRlc), line
parallelism (IRlp), line verticality (IRlv), and SDA
(standard deviation of the angles formed at a vertex equal
to zero, denoted as IRsda) to estimate the depth of one
free vertex of Gpi . After the depth of one free vertex
is reconstructed, face planarity (Fig. 9(a)) can then be
used to derive the depths of the other vertices in this
part. It is possible that multiple image regularities are
in conflict with each other. To solve this problem, we
specify the priority of the four image regularities as
IRlc > IRlp > IRlv > IRsda. For instance, for a
free vertex whose depth can be derived by both IRlp

and IRlv , we use line parallelism to estimate its depth.
In the implementation, we firstly select all the vertices

with unknown depths as free vertex candidates, which
connect to a part whose 3D shape has been reconstructed,
and then we check if the condition of any image regular-
ity is satisfied for one of the free vertex candidates in the
order of the priority. If one image regularity is satisfied,
we select the corresponding vertex as the free vertex
and compute its depth with this image regularity. Finally,
face planarity is exploited to derive the rough depths of
the other vertices in this part. Note that when IRlp is
used to derive the depth of a free vertex, there usually
exist multiple reconstructed lines parallel to the line
containing the free vertex. In this case, the z-coordinate
of the free vertex is set to the average of the values
derived by these reconstructed lines.

6 EXPERIMENTS

We conducted several experiments to evaluate the effi-
ciency and effectiveness of the proposed decomposition
and reconstruction algorithms. We focused on com-
parisons with the Divide-and-Conquer (DaC) method
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Fig. 9: Examples of estimating the unknown depths of vertices with image regularities. The vertices whose depths
have been recovered are marked by ⃝ in red and their 3D positions are used to estimate the depths of the vertices
marked by � in blue. (a) shows that the depths of the vertices v5, v6, v7, v8 can be computed with the 3D positions
of v1, v2, v3, v4 using face planarity. In (b), the depth of the vertex v3 can be obtained with v1 and v2 using line
collinearity. (c) shows how to estimate the depth of the vertex v10 using line parallelism, since edges {v1, v2},
{v3, v4}, {v5, v6}, and {v7, v8} are parallel with the edge {v9, v10} and the 3D positions of the vertices v1−9 have
been recovered. (d) shows that the depth of the vertex v2 is estimated by line verticality, since the 3D shape O1 of
the bottom part has been reconstructed. (e) shows a case in which the depth of the vertex v9 is estimated by SDA.

proposed by Liu et al. [13] since their method can handle
more complex manifold objects than other previous
methods. We implemented the proposed algorithms in
C++, and ran them on a PC with an Intel(R) Dual
Core(TM) i5 CPU M540@2.53GHz (only a single thread
used for simplicity).

In the first experiment we tested our decomposition al-
gorithm (Algorithm 1) and the decomposition algorithm
in DaC (Steps 1 and 2 of Algorithm 3 in [13]) on 30
line drawings shown in the first and fourth columns of
Fig. 10. Most of these line drawings were collected from
previous papers such as [12], [13], and [38]. The DRFs
of these line drawings vary from 4 to 17.

For the line drawings with indices (1)–(24), our algo-
rithm obtained the decomposition results similar to those
by DaC. Neither our algorithm (because their DRFs are
already 4) nor DaC (because they have no internal faces)
succeeded to decompose the two 4DRF line drawings
(25) and (26). However, we will show in Section 7
that our algorithm can be extended to handle these two
drawings by generating some new vertices and edges.

The line drawings (27–30) show four manifolds which
could not be decomposed by DaC (with the maximum
search depth Dmax set to 10), but were successfully
decomposed by our algorithm. In these line drawings,
the internal faces have more than 10 vertices, which is
beyond the predefined maximum search depth for DaC.
The decomposition results of the line drawings (27)
and (28) indicate that our algorithm can be extended
to handling curved-face manifolds if a curved surface
is approximated by multiple planar faces. The time for
decomposing each of these 30 line drawings was within
0.01 second with our algorithm, and was much less
than that needed by DaC (about 5–14 seconds for each
successfully decomposed drawing).

We further evaluated computational performance on
line drawings of increasing complexity, as shown

Fig. 11: (a) Seven line drawings of increasing complexity
indexed by seven loops. (b) The times used to decompose
the line drawings in (a) by our algorithm and DaC.

in Fig. 11. There are in total seven line drawings
(Fig. 11(a)), indexed by seven loops O1−7 with Oi ⊂
Oi+1, 1 ≤ i ≤ 6. The times for decomposing O1−7

by our algorithm, DaC with Dmax = 10 and DaC with
Dmax = 11, are illustrated by the three respective curves
in Fig. 11(b). The results indicate that our algorithm is
approximately linear in the number of line drawing parts,
while DaC is largely exponential. In addition, on O7, our
algorithm was about four orders of magnitude faster than
DaC with Dmax = 11.

We conducted another experiment to evaluate the
3D reconstruction performance of the proposed method,
including the decomposition step. Our method, PR for
short, was compared to DaC and LS, the method by
Lipson and Shpitalni [3]. LS is a typical 3D reconstruc-
tion method without line drawing decomposition. For fair
comparison, the same reconstruction algorithm [3] was
used for PR, DaC and LS.

The line drawings (1)–(24) in Fig. 10 were used in
this experiment since the decomposition results by DaC
and our algorithm were similar. The convergence criteria
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Fig. 10: Thirty tested line drawings (1st and 4th columns), and their decomposition results by DaC (2nd and 5th
columns) and our algorithm (3rd and 6th columns). Better viewed on the screen by enlarging the figure.
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for all the algorithms were the same: stopped when the
difference between the values of the objective function in
two consecutive iteratons was below a given threshold
(0.001 in our experiment). For each line drawing we
ran each algorithm ten times. Two measurements were
adopted to evaluate the robustness of the reconstruction
process using these algorithms.

One is the average planarity error (APE) of all the
faces of the ten reconstructed 3D object parts O1−10

from a line drawing L, defined as
APE(O1−10|L) =

1

10∆L

10∑
k=1

1

Nf
(

Nf∑
i=1

Mfi∑
j=1

Dk
ij), (3)

where Dk
ij =

|ak
fi

xk
j+bkfi

yk
j +ckfi

zk
j +1|√

(ak
fi

)2+(bkfi
)2+(ckfi

)2
, akfi , b

k
fi

and ckfi are

the parameters of the best-fit plane for face fi obtained
from the kth running (how to obtain the best-fit plane
from a set of vertices can be found in [3]), Mfi is the
number of vertices in face fi, ∆L = max{∆x,∆y}
denotes the size of the original line drawing L (∆x

is the width and ∆y is the height of L), Nf is the
number of the faces in L, and (xk

j , y
k
j , z

k
j ) is the 3D

coordinate of the jth vertex of face fi obtained from the
kth running. The term Dk

ij denotes the distance between
vertex (xk

j , y
k
j , z

k
j ) and the best-fit plane.

Another measurement is the average line-parallelism
error (ALE) of all the parallel lines of the ten recon-
structed 3D objects O1−10, defined as

ALE(O1−10|L) =
1

10Np

10∑
k=1

∑
(li,lj)∈S

θ(((lki )
3D, (lkj )

3D)), (4)

where S is the set of pairs of parallel lines (li, lj) in
the line drawing which are recognized as parallel in
3D space by users, Np is the number of pairs in S,
and θ(((lki )

3D, (lkj )
3D)) = cos−1((lki )

3D · (lkj )3D) is
the angle between two unit vectors (lki )

3D and (lkj )
3D

of two 3D parallel lines corresponding to li and lj ,
respectively, from the k running. In this experiment, S
was obtained by these two steps: 1) find the set of all
the pairs of parallel lines in the 2D line drawing (two
lines were regarded as parallel if the angle between them
was less than 7◦); 2) then remove the pairs that were not
interpreted as parallel by the users.

The quantitative evaluation results for these algorithms
on the test examples are shown in Fig. 12. Fig. 12(a)
indicates that PR is more efficient than the other two
algorithms for all the examples. It is because PR com-
putes initial 3D shapes which are already close to the
optimal ones, thus greatly reducing the iterations of the
optimization algorithm in reconstruction. It is shown in
Figs. 12(b) and (c) that in most cases our method led
to more robust reconstruction results than both DaC and
LS. In fact large values of APE and ALE often signal
distorted or failed reconstructions. Fig. 13 shows the

Fig. 12: (a) Reconstruction times of PR, DaC, and LS,
including the line drawing decomposition step for PR
and DaC, but excluding the face identification step for all
the three methods). (b) Reconstruction robustness com-
parison evaluated by APE. (c) Reconstruction robustness
comparison evaluated by ALE.

reconstruction results from the first six line drawings of
the test examples. It can be seen that for some examples,
such as the one in the third column, although DaC could
give roughly correct shapes from the decomposed parts,
the integrated results might suffer from artifacts. This
is mainly because DaC fails to faithfully maintain the
globally geometrical relationships between parts during
reconstruction.

Our algorithm is largely robust to sketching errors.
Take the line drawing in Fig. 10(6) as an example. To
analyze the sensitivity of our algorithm, we generated its
random variations by randomly disturbing the 2D x- and
y-coordinates of the vertices according to a Gaussian dis-
tribution N(0, σ). Figs. 14(b–d) show three such noisy
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Fig. 13: Experimental results on six test examples. The
first row shows the line drawings. The second and third
rows show two views of the reconstruction results by
PR. The fourth and fifth rows show the results by DaC
and LS, respectively. Different colors are used to denote
the recovered faces of the reconstructed 3D objects.

Fig. 14: (a) The line drawing in Fig. 10(6). (b) to
(d): line drawings with increasing sketching noise (with
σ = W/400, W/200, and W/100, respectively). The
middle and bottom rows show the results obtained by
our algorithm, under two different views.

line drawings, with increasing sketching noise (σ being
W/400, W/200, and W/100, respectively, where W is
the width of the line drawing, shown in Fig. 14(a) too).
The middle and bottom rows show the corresponding
reconstruction results by our algorithm. It can be seen
from (b) that our algorithm almost perfectly handles a
slightly noisy line drawing. For the line drawing with
stronger sketching errors our algorithm is still able to
produced reasonably good results. However, when the
input line drawing is highly distorted, the result is not
satisfactory any more.

7 DISCUSSIONS

DRF-based Decomposition. Our decomposition algo-
rithm can deal with a wide range of objects formed by
4DRF parts. From our observations, we found that a

line drawing that can be well decomposed is required to
satisfy two conditions. First, there are no missing edges
and vertices in the line drawing. That is, the input line
drawing must contain all the vertices and edges of the
4DRF manifolds forming the desired 3D object. Second,
there must exist at least one trihedral vertex in the line
drawing.

The second condition comes from the fact that in Step
3 of Algorithm 1, each selected pair (seed) of faces
share a trihedral vertex. The line drawing shown in Fig.
15(a) is one without any trihedral vertex and thus cannot
be decomposed by Algorithm 1. However, if a seed is
not required to share a trihedral vertex (i.e., any two
neighboring faces can be a seed), then Algorithm 1 can
still decompose such line drawings. Fig. 14(b) gives such
a result, which contains four decomposed parts p1−4.
Obviously, a more desired decomposition is to have parts
p1−3 combined into a single part. One possible solution
to merge these non-manifold small parts into a 4DRF
manifold is to use the information provided by p4. From
p4, we can run the face identification algorithm in [28]
on p4 to obtain the new face (1, 2, 3, 4, 5). Such face
information makes the combination of p1−3 still a 4DRF
manifold. In fact, we can always merge decomposed
parts each with fewer faces into a larger line drawing,
which may or may not represent a 4DRF manifold.

Therefore, to remove the second condition, the follow-
ing four steps can be carried out: 1) run Algorithm 1 first;
2) check whether there is a part without any trihedral
vertex; 3) if there is such a part, then on this part, run
Algorithm 1 again but with a modified seed selection
criterion, allowing any pair of neighboring faces as a
seed; and 4) finally merge the parts whose numbers
of faces are smaller than a threshold. Developing a
complete merging method is our future work.

As shown in Figs. 10(25) and (26), a 4DRF object with
trihedral vertices and many faces cannot be decomposed
by Algorithm 1 or DaC. However, if suitable new edges
and vertices are generated on the original line drawing,
then the line drawing can still be decomposed into 4DRF
parts. For example, in Fig. 15(c), if the dotted edges are
added to the original line drawing represented by the sol-
id lines, our algorithm could separate it into four cuboids
(Fig. 15(d)). How to design a method to automatically
add such edges and vertices is an interesting topic to
explore further in the future.

Progressive 3D Reconstruction. The better perfor-
mance of our approach comes from the estimate-and-
optimize strategy for each subsequent part. There is still
room for improvement in this strategy. The estimation
of the initial 3D shape for one part may be improved
by selecting the most suitable regularity depending on
the nature of each part (such as using the axonometric
inflation scheme in [10] for a quasi-normalon part). In
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Fig. 15: (a) An object without a trihedral vertex. (b)
One possible decomposition result by Algorithm 1 with
the modified seed selection criterion. (c) A line drawing
(solid lines) representing a 4DRF object that cannot be
decomposed. (d) Decomposition result by Algorithm 1
if the new edges (dotted lines in (c)) are added to the
original line drawing.

addition, a better strategy, which considers both the topo-
logical relationship between parts and the reconstruction
quality of each part, can be utilized to determine a better
reconstruction sequence of all the decomposed parts.

3D Beautification. After a 3D object is reconstructed
by our algorithm (or other algorithms), it is possible
to use a beautification algorithm to improve the result.
There exist a few methods [39], [40], [41] for this
task, in which the goal is to refine the x-, y-, and z-
coordinates of all the 3D vertices for example through
constrained optimization. It should be mentioned that if a
reconstructed object is too distorted, a 3D beautification
algorithm cannot help much usually; developing a good
reconstruction algorithm is more crucial.
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