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Cross-class 3D object synthesis guided by reference examples
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a b s t r a c t

Re-combining parts of existing 3D object models is an interesting and efficient technique to create novel
shape collections. However, due to the lack of direct parts’ correspondence across different shape
families, such data-driven modeling approaches in literature are mostly limited to the synthesis of in-
class shapes only. To address the problem, this paper proposes a novel approach to create 3D shapes via
re-combination of cross-category object parts from an existing database of different model families. In
our approach, a reference shape containing multi-functional constituent parts is pre-specified by users,
and its design style is then reused to guide the creation process. To this end, the functional substructures
are first extracted for the reference shape. After that, we explore a series of category pairs which are
potential replacements for the functional substructures of the reference shape to make interesting
variations. We demonstrate our ideas using various examples, and present a user study to evaluate the
usability and effectiveness of our technique.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Creating large-scale man-made 3D shape collections is essen-
tial for modeling the virtual world. However, manually assembling
such shapes would be tedious and extremely labor-intensive,
especially when the target model to be designed is complicated
in its structure and function.

Recently, several approaches [1–3] have been proposed to effec-
tively synthesize 3D shapes of a single family through reusing
existing object parts. In these approaches, a single-class shape
collection is fed into the algorithm, which interchanges the parts
among different 3D models to generate a large collection of novel
shapes. However, although such approaches can achieve promising
results in certain scenarios, the diversity of the synthesized shapes
might be limited without attention to inter-class information. The
challenge in cross-class 3D object synthesis is the lack of direct parts'
correspondence: naively interchanging shape parts can easily destroy
the shape plausibility. Moreover, for the probabilistic approaches
[2,3], it is hard to collect enough cross-class models for training.

In this paper, we present an approach to synthesize shapes
using parts from a variety of model families under the guidance of
a reference shape. The reference shape is required to have
composite man-made designs with multi-functional components
and complicated structures. Given the reference shape and a

database of pre-segmented shapes from multiple categories, we
first summarize their part structures using relation graphs. For
each part of the shapes, its structural context is then identified by
considering the related parts which have a support relation. We
denote the sub-graph constituted by a part as well as its structural
context as a substructure. We notice that certain substructures are
more critically related to the actual functionality of the models
(e.g., a chair's seat and its support, a sunshade's awning and its
support, etc.). Such a substructure is defined as the functional
substructure of the shape. Then we use an Harmonic Shape
Descriptor (HSD) based descriptor to match the substructures
between the database shapes and the reference shape aimed to
analyze the constituents of the reference shape (Section 4). The
obtained correspondences could be leveraged for exploring poten-
tial component replacements based on a category suggestion
algorithm for synthesizing novel shape collections (Section 5).

To validate the effectiveness of the proposed approach, we
collect a database consisting of 15 model families, and conduct
experiments on 9 complex reference shapes. The obtained results
and an additional user study show that cross-class synthesis of
novel 3D shapes could be effectively performed by reusing the
composite design of a complex reference model.

2. Related work

Assembly-based modeling: Recently, as model collections grew,
researchers have focused on data-driven content creation. Modeling
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by example [4] provided an approach to create new objects by
cutting and compositing parts in a 3D database. Chaudhuri and
Koltun [5] provided suggestions for 3D modeling benefited from
customized examples that stimulate creativity. Shen et al. [6]
presented an approach which converts scanning data to 3D models
with labeled semantic parts. Tang et al. [7] presented a surface
deformation method with local and nonlocal guidance, which
supports mesh merging. In another approaches, probabilistic mod-
els were learned for shape synthesis [2,3]. Jain et al. [8] proposed a
system to create new shapes by blending between shapes from a
database. Smart variations [9] proposed a geometric approach
based on substructure to create functionally plausible model varia-
tions. The above methods achieve impressive results in shape
synthesis with in-class shapes, or shapes across the categories
which have similar structures. While it is still a hard work for
synthesizing the shapes from the categories with different struc-
tures and functions. We leverage the reference shape to inspire
shapes from such categories synthesizing novel multi-function
composite models.

Shape analysis: Various approaches have been proposed to
extract high-level hierarchies of shapes. Wang et al. [10] introduced
symmetry hierarchy of man-made objects to represent a 3D model
by a symmetry-induced, hierarchical organization of the model's
components. Semi-supervised learning method [11] used users’
assists in the co-analysis by providing inputs iteratively to constrain
the system. The survey [12] explored numbers of methods of
extracting geometric symmetries and exploiting high-level hierar-
chies for a wide variety of geometry applications. In our work, we
analyze the shape taking advantage of each component's structure
context. Then we employ an analysis algorithm to recognize the
functional substructures of the reference shape.

Exploring shape collections: With the fast growing of 3D data-
bases that are available on the Internet, efficiently exploration of
these shapes has becoming a new task for researchers. Attene et al.
[13] proposed to perform segmentations and annotations of 3D
surface meshes through ontology. Recently, more approaches have
been extracted for organizing and exploring a collection of 3D
shapes, such as deforming a base template [14], using fuzzy
correspondences [15], and utilizing a qualitative analysis [16].
Besides, some works analyzed the relevancy between image and
shape collection. For example, Averbuch-Elor et al. [17] proposed a
distillation algorithm for image collections which supports 3D
applications like the construction of a 3D abstract model. Zhou
et al. [18] used a single image to model a 3D garment. Su et al. [19]
added depth to an image of an object by exploiting a collection of
aligned 3D models of related objects. Huang et al. [20] proposed to
jointly analyze a collection of images of different objects along with
a smaller collection of existing 3Dmodels. In our work, we employ a
category group suggestion algorithm to explore the matched shape
categories, which can be used to replace the certain substructures of
the reference shape to synthesize novel composite models.

3. Overview

As shown in Fig. 1, our method consists of an offline stage and
an online stage. In the offline stage, we pre-analyze the 3D shape
collections to facilitate computation. When online, an external
reference shape is fed into our system with its design reused to
synthesize novel composite models. We will briefly describe these
two stages in the rest of this section.

3.1. Offline database pre-processing

The database of shape collections we use in this paper contains
15 categories (i.e., bathtubs, beds, benches, bikes, boats, chairs,

dressers, cribs, lamps, pavilions, pianos, sofas, sunshades, tables
and trolleys) collected from [21–23]. We assume that all the
models in the database have been pre-segmented into meaningful
parts. The state-of-the-art segmentation algorithms [13,11] work
well for this purpose. Note that we do not require the semantic
labels of parts or their correspondences be available.

Our approach requires that 3D models have approximately
correct sizes as those presented in daily life. It is critical for our
algorithm since some geometric features are deduced from the
relative scales between parts. Besides, the method [24] is used to
make sure that models have upright orientations. We also align
the shapes globally to a common orientation to facilitate subse-
quent part synthesizing [9]. Finally, each shape is represented by a
spatial relation graph, whose nodes and edges are formed by parts
and their support relations, respectively. Note that the graph is
directed since the support relations are not commutative.

3.2. Online shape synthesis

Given the input reference shape, the online shape synthesis
consists of two main steps, namely, functional substructure
matching and design reusing.

Functional substructure matching: This step aims at finding
functional correspondences between the reference shape and a
database shape. To this end, the input reference shape is first
manually segmented into meaningful parts and represented by a
relation graph as similar as in preprocessing database shapes.
Afterwards, we seek for the substructures (i.e., components and
their structural contexts) which are matched between the data-
base shapes and the reference shape by a descriptor encoding
shape geometry and support type. The matched substructures
what we called functional substructures can be leveraged to
describe the functional constituents of the reference shape, and
establish the correspondences between the database shapes and
the reference shape in part-level. The details of this step are
summarized in Section 4.

Design reusing: After the correspondences between shapes are
obtained, we reuse the design of the reference shape to inspire
synthesis of novel cross-class models. Specifically, a suggestion
algorithm is employed to encourage existing shapes from different
categories to participate in synthesizing. Moreover, we adopt
structure evolution to further diversify the created shapes. We
refer the reader to Section 5 for more technical details.

4. Functional substructure matching

In this section, we introduce how to extract the functional
substructures of the reference shape and database shapes with
structural context descriptor, as well as establish their correspon-
dences. We first add the support relation to the shape's related
graph to get the each components structural context (i.e., the
structurally related parts) and every substructure which consists
of a component and its structure context. Then we use the
structural context descriptor to analyze the shape and support
type of each component, and match the similar substructure in
shapes from the database to explore the functional substructure of
the reference shape.

4.1. Functional substructure

For man-made shapes, some components are more critically
related to the actual functionality of the models. Zheng et al. [9]
leverage mutual (geometric) relations among different arrange-
ments of shape parts to identify component-level compatible
functional substructures. Since functionality is rarely explicitly
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encoded in the raw geometric descriptions, their method intends
to simplify this problem by seeking for certain substructures
which are often related to actual functionality of the models. Our
method follows a similar idea. In our approach, the core compo-
nent and its structural context (e.g., a chair's seat, and its context),
which are more critically related to the shape's actual function-
ality, constitute the substructure that we term functional sub-
structure. Single-functional database shapes always have single
functional substructures, while multi-functional reference shapes
have more than one functional substructure. We observe that the
functional substructures which have similar functionalities are
more likely to be matched.

As mentioned in Section 3, the reference shape and all shapes
from the database are represented by directed spatial relation
graphs. Given a model with its relation graph, we can extract the
shape's substructure as follows. For the i-th part denoted as Pi in
the model, we use the directed graph to collect the set of parts Oi

supported by Pi and the set of parts U i that support Pi. In this way,
the substructure with Pi as the center part is the subgraph with the
node set Ri ¼ Pi⋃Oi⋃U i. Afterwards, we aim to explore certain
substructure which is able to represent the using function of the
man-made shape. Specially, we call such substructure as the
functional substructure. We can use the database shapes to
analyze the functional constituents of the reference shape via
matching the functional substructures.

4.2. Structural context descriptor

In order to measure the similarity of the substructures between
the reference shape and the shapes from the database, we employ
the structural context descriptor based on Harmonic Shape Descrip-
tor (HSD) [25] to encode the shape and support of a substructure.
The main idea of HSD is to decompose a spherical region into
concentric spherical shells with different radii and compute the
spherical harmonic decomposition for each of those shells, and

then store the amplitudes of the harmonic coefficients within
every frequency to form a feature vector for indexing and
matching.

For the i-th substructure of a given model, its shape descriptor
ci is obtained through the following steps. First, the voxel-based
representation of its center part Pi is obtained. Then, we intersect
the model with 32 concentric spheres. The final feature is formed
by concatenating the norms of frequency component at each
radius based on 16 harmonic frequency decomposition of each
spherical function. Note that since the reference shape and the
shapes in the database may have different granularity of segmen-
tation, for each component of the shapes in the database, we
simultaneously calculate the shape descriptors ci for the center
part Pi and c0i for the merged shape with parts Pi [ Oi. We will
discuss how the different granularity of segmentation influences
the composite result in Section 6.

In addition to the shape descriptor ci, we also define a support
descriptor mi based on the HSD to represent the type of support
for the substructure. First, we resize the oriented bounding box
(OBB) of center part Pi to a cube, and transfer the scale deforma-
tion to the part set U i which support Pi. Then, we use the cube's
center as the center of sphere, and the cube's diagonal di as
diameter to create a spherical shell. We add another 6 (3 inside
and 3 outside) concentric spherical shells with the diameter range
from 0:85ndi to 1:15ndi to enhance the descriptor. As shown in
Fig. 2, this spherical region is near the surface of center component
(green), thus the descriptor is able to encode the support types
and the connecting positions for all support parts.

The support descriptor can well measure the similarity of
support types of two models. As shown in Fig. 3, we choose
9 shapes with various types of support relations. Our support
descriptors work well even in distinguishing different support
types, while the original HSD features extracted on the parts
engaged in the support relations do not (e.g. see the 1st model
umbrella and the 3rd model bed in Fig. 3).

Fig. 1. Starting from a reference shape, a series of shapes from different categories are suggested and recombined to synthesize various composite models.

Fig. 2. For each part, we first resize the object to make the part's OBB to be a cube, and then calculate the support structure feature with the concentric spherical shells.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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4.3. Substructure matching

We match the substructures between the reference shape and
the shapes from the database by measuring their descriptors. For
the i-th substructure of the reference shape and the j-th sub-
structure of a database shape, the distances of their shape and
support descriptors are given by

dshðRi;RjÞ ¼minð‖ci�cj‖2; ‖ci�c0j‖2Þ; ð1Þ

dstrðRi;RjÞ ¼ Jmi�mj J2; ð2Þ
where ci, mi, cj, mj are the descriptors of the substructures as
previously defined. To normalize the distances to a unified scale,
we further define the scale factor fsh and fstr as

f shðRi;RjÞ ¼

Jciþcj J2
nðciÞ

if Jci�cj J2o Jci�c0j J2

Jciþc0j J2
nðciÞ

otherwise;

8>>><
>>>:

ð3Þ

f strðRi;RjÞ ¼
Jmiþmj J2

nðmiÞ
; ð4Þ

where nðciÞ and nðmiÞ are the number of the shape descriptor
matrix elements and support descriptor matrix elements
respectively.

Given the distance criteria, for the kth substructure Rk of the
reference shape, we first suggest a category that contains the most

similar substructure to Rk. Denote the models in the cth category
in database as Gc , the suitability by replacing the substructure Rk

with a substructure of the cth category is given by

eðRk;GcÞ ¼w1 � dn

shðRk;GcÞ
f nshðRk;GcÞ

þw2 � dn

strðRk;GcÞ
f nstrðRk;GcÞ

þw3 � dsðRk;GcÞþw4 � dhðRk;GcÞ; ð5Þ

where dn

shðRk;GcÞ ¼minR0 AGc dshðRk;R0Þ is the minimum disparity
of the shape descriptor between Rk and all substructures in Gc, and
f nshðRk;GcÞ is the corresponding scale factor. The minimum dis-
parity of support descriptor dn

str and the corresponding scale factor
f nstr are similarly defined. To take geometric similarity into con-
sideration, we further introduce the distance measure ds and dh as

dsðRk;GcÞ ¼ min
R0 AGc

rxðRk;R0ÞþryðRk;R0ÞþrzðRk;R0Þ;

dhðRk;GcÞ ¼ min
R0 AGc

tyðRk;R0Þ; ð6Þ

where rx, ry, and rz are the scale ratio between the center parts of
two given substructures along x, y and z dimension, respectively.
We also measure the position disparity ty between the mass of the
given two center parts along y dimension. The weights
w1 ¼ 0:3;w2 ¼ 0:15;w3 ¼ 0:4;w4 ¼ 0:15 are ascertained by experi-
ment. The best category that matches the substructureRk is finally
obtained by computing arg mincACeðRk;GcÞ, where C is the index
set of all categories.

Fig. 3. The classification of support type with our support structure feature (left) and regular HSD method (right).

Fig. 4. Correspondence of the substructures between reference shape and candidate shape.

X. Su et al. / Computers & Graphics 54 (2016) 145–153148



Finally, for each substructure of the reference shape, we explore
the matched substructure of the database shape by minimizing the
energy of Eq. (5). To control the divergence between the synthe-
sized model and the reference model, we allow the users to
specify the core component of each category of shapes, and the
amount of functional substructures N in reference shape. The top N
substructures with the minimum energy are selected as the
functional substructures. The functional substructures and their
matched shapes in the suggested categories are fuzzily corre-
sponded, as shown in Fig. 4.

5. Design reusing

With the obtained correspondences, we introduce in this
section the heuristic category suggestion mechanism to reuse
the reference shape to synthesize composite models, and some
post-processing steps to further optimize and diversify the synthe-
sized models.

5.1. Category suggestion

In Section 4, an energy function 5 is defined to measure the
similarity between substructures. However, if we directly use this
energy to suggest categories for replacement, we cannot generate
functionally plausible and geometrically coherent models by set-
ting the relative weights w1 and w2 between the similarity of
shape geometry and support type determinately. Thus, in practice
we adopt a heuristic and iterated suggestion mechanism. In each
iteration, the algorithm selects a pair of functional substructures
and generates four variations for them. Note that our algorithm
operates on appropriate category pairs to account for reusing
cross-category designs, and a reference shape with more than two
different functional substructures can be easily handled by decom-
posing them into substructure pairs.

In an iteration, the suggestion algorithm works as follows.
Given two substructures of the reference shape R1 and R2, we
first find the best matched two categories with the corresponding
database substructures R0

1 and R0
2 by computing the minimum

sum of the energies obtained by Eq. (5). To explore more other
rational replacements, we then fix R0

1 or R0
2 and change another

substructure by finding its best match. At this time, the relative
weights w1 and w2 in the energy function 5 are set to 0.2 and
0.8 respectively to ensure a high structural similarity. After this
step, we have two more pairs of database substructures, namely
ðR0

1;R″
2Þ and ðR0

2;R″
1Þ for replacement. Finally, we produce one

more pair ðR″
1;R″

2Þ by simply keeping the newest obtained
database substructures. After each iteration, we obtain four sub-
structure pairs for replacement. Then, we eliminate the used
substructures in database out of the loop and proceed for the
next iteration.

For instance, for the input reference shape in Fig. 5 (left) with
two functional substructures, our suggestion mechanism first
recommends the pair (chair, table), and then adds the pairs (chair,
sunshade) and (bench, table) by fixing one and changing another,
and finally gives the pair of bench and sunshade (Fig. 5 (right)).
These operations are repeated to obtain replacements using more
other categories.

5.2. Shape synthesizing and optimizing

After the previous step, we have obtained a series of database
substructure pairs that could be used for plausible replacement.
We replace the original substructure pairs the obtained pairs by
enumeration, obtaining a collection of initial synthesized models.
Note that in the offline preprocessing stage (see Section 3.1), the

database shapes are scaled and their orientations are globally
aligned, the synthesis can be done directly. However, the replaced
parts are still loosely placed together. Before further optimization,
we first take two simple preprocessing steps to eliminate the
models not visually coherent with the reference model. First, for
each initial synthesized model, if the shape geometries of the
support parts between the reference substructure and the
replaced substructure are not similar (i.e. the distance of their
shape descriptors exceeds a threshold), we retain reference
shape's support parts and discard the replaced ones. Moreover,
we duplicate the base part of the replaced substructure to make it
have the same number of base parts as that of the reference
substructure to ensure visual coherence.

To synthesize the initial models into holistic ones, we adopt an
optimization procedure similar with that of [2]. In our implemen-
tation, we consider both contact and support relations in terms of
contacting slots between two parts (see the survey [9] for more
details). If two parts have different number of contact positions,
we will treat them separately. For the part which has less number
of connect slots, we consider the whole slots and define the
number of slots as N. For the other one, we only consider N slots
of it which minimized the sum of the distance between the slots of
two parts. In some extreme cases, there exists no suitable contact
slots (i.e. the parts of the replaced shape mismatch those of the
original shape). Since such case is rare, we manually choose the
appropriate connect positions.

Finally, we adjust the orientation of the replace substructure.
We use the global symmetry plan of the replaced functional
substructure to rectify the upright orientation of the replace
substructure. We use the method of [9] to address the ambiguities
brought about by symmetry flipping.

5.3. Structure variation

Some reference shapes may contain symmetric components
which serve as a strong indication in its appearance and function.
This property can be explored to further diversify the structures of
the created composite models, as shown in Fig. 6. We implement
this idea through combining and separating operations to change
the shape's structure. Combining operation merges the symmetric
components together and separating operation duplicates the
single element, respectively. Specifically, for the symmetric parts
in the reference shape, if the size of the replaced parts is larger
than the original one in the reference shape, the synthesized
model may have several components overlapped with each other.
In this case, the combining operation is employed on the over-
lapped parts. On the other hand, for the independent part in the
reference shape, when the size of the replaced part is smaller than
the reference part and the remaining parts in the reference shape
are symmetric, then the separating operation is employed to
duplicate the replaced part to make them also symmetrical.

6. Results

Qualitative results: We tested our method with nine complex
multi-functional reference shapes on a database with 15 different
model families coming from [21–23]. Each model family has 15–30
shapes. Specially, for certain categories (e.g., chairs, tables and
beds), we also test the design reusing process with a large
database in which each family has around 100 shapes. This often
leads to more various interesting shape variations. We illustrate
some representative results in Fig. 7.

Time analysis: Generally, the time cost of functional structure
analysis and category suggestion is less than 10 s on an Intel i7-4790
3.60 GHz desktop with 16GB memory. The remaining synthesizing
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process is nearly automatical, with only several composite models
whose base parts are manually adjusted. The whole running time for
shape synthesis is typically in 30 s.

User study: We also conducted a user study to assess the results
of our method. The user study was conducted with 15 participants,
all graduated students of computer science. To prepare for the user
study, we collected the top 4 category pairs suggested with and
without our heuristic suggestion algorithm for several reference
shapes, including the ones shown in Figs. 1 and 5, and the top
4 ones in Fig. 7, resulting in 48 synthesized results in total. We also
compared our results with those generated by human designers.
Specifically, we asked each user to select 4 category pairs with
respect to each reference shape. Then we got the composite models
synthesized based on those category pairs as the human designs.
Note that for fair comparison the same shape synthesis method was
applied to all suggestion category pairs (see Section 5.2). After-
wards, we asked each participant to blindly evaluate the rationality
both in appearance and structure of our results and human-
designed results (excluding the composite models designed by this
participant), and to give a score in the range from 0 (poorest) to 100
(best). The evaluation results are summarized in Fig. 8. It indicates
that our heuristic suggestion mechanism performed better than
directly using the shape and support descriptor in category sugges-
tion. The composite results produced by our approach achieve a
similar level of the manually designed results.

Limitations: Our work has two main limitations. First, our
approach relies on good-quality pre-segmentation of the reference
shape to reveal its functional substructures. Fig. 9 (left) shows two
failed examples due to either under-segmentation (a) or over-
segmentation (b). In such cases, manual intervention is needed to

ensure an acceptable segmentation. Some parts which are irrele-
vant to the structure of the reference shape (e.g., the ladder of the
last example in Fig. 7) are also manually removed from the relation
graph to avoid misleading the matching of substructures. Second,
even though our HSD based descriptor often enables the extraction
of certain constituents which play an important role in the shape's
functionality, such functional substructures are after all based on
geometric properties only and thus do not always have semantic
meanings. Therefore, some category suggestion results may fail to
produce a semantically meaningful composite model, since their
semantic functionalities are not suitable to be combined. For an
example in Fig. 9(c), the crib is suggested to be placed around the
table, making the table useless in practice. Another example is
shown in Fig. 9(d), the synthesized tricycle is the combination of a
bicycle and a chair. The wheel of tricycle is duplicated to satisfy the
symmetric structure of the reference shape. However, there lacks a
suitable axle to link the rear-wheels and support the seat.

7. Conclusion

We present in this paper a novel approach for cross-class shape
synthesis via reusing the design of a reference shape. In our
approach, we first extract functional substructures for the reference
shape. After that, we establish the correspondences between the
substructures of the database shapes and the functional substruc-
tures of the reference shape in terms of their shape geometry and
structural context. Given the correspondences, we reuse the design
of the reference shape through a category suggestion algorithm to
initialize a collection of cross-class synthesized models which are

Fig. 5. Left: The reference shape. Right: Four category suggestion results, in each of which shapes from the suggested category pair (left) are used to synthesize the
composite model (right) guided by the reference shape.

Fig. 6. Structure variation with separate operation (left) and combine operation (right).
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Fig. 7. Guided by the reference shapes (left), our approach enables the non-trivial shape variations across classes (right) by synthesizing the suggested shapes from the
database.
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then optimized and expanded with more variations. In the experi-
ments, we show various examples and present a user study
illustrating the effectiveness of our method.

We believe that design reusing of a reference shape opens up
new opportunities for shape synthesizing and can be helpful for
generating complex multi-functional composite models. In the
future, we will consider modeling approach jointly guided by
structure and shape geometry of a reference shape, and improve
the practicability of the synthesized models by introducing func-
tional semantics of models.
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