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ABSTRACT
We propose a new Web page transformation method for
browsing on mobile devices with small displays. In our ap-
proach, an original web page that does not fit into the screen
is transformed into a set of pages, each of which fits into
the screen. This transformation is done through slicing the
original page iteratively with several factors considered, in-
cluding the size of the screen, the size of each page block,
the number of blocks in each transformed page, as well as
the semantic coherence between blocks. The resulting set of
transformed pages form a multi-level tree structure, called a
slicing*-tree, in which an internal node consists of a thumb-
nail image with hyperlinks and a leaf node is a block from
the original web page. Through this transformation, the
contextual information in the original web page is preserved
and the page scrolling effort is saved. We have implemented
this transformation module on a proxy server and have con-
ducted empirical studies on its performance.
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1. INTRODUCTION
Internet-enabled Personal Digital Assistants (PDAs) have
become more and more powerful and compact. For instance,
the new HP iPAQ hx4700 Pocket PC features a 624 MHz
processor, 128 MB ROM, 64 MB RAM, and 4’ display, all
contained in a 3′ × 5′ × 0.6′ thin pad. As these devices gain

Figure 1: (a) Displaying an original Web page on a
desktop computer and a PDA. (b)-(e) Transformed
pages of the original page.

increasing popularity, it is desirable to make Web browsing,
one of the most common activities on desktops, also con-
venient on these devices. However, the majority of current
Web sites are designed for desktop displays (e.g., the page
in Figure 1 (a)), and only a handful of browsers on PDAs
(e.g., PalmScape [2], ProxiNet [3], and HandWeb [4]) sup-
port limited Web page adaptation for small displays. As a
result, PDA users have to scroll constantly when viewing a
Web page on a palm-sized screen (e.g., the page in the PDA
in Figure 1 (a)). In this paper, we explore a new approach
to automatic page transformation for small displays.

Our approach is based on the following key observation:
PDA users draw heavily on their browsing experience on
desktops when browsing on PDAs. In particular, page lay-
out and visual context information are crucial for users to
identify the content and links of their interests in a page.
Therefore, for an original web page that does not fit into
a small screen, our transformation method first displays its
thumbnail image with multiple embedded hyperlinks (Fig-



ure 1 (b)). When a part of the page is pen-tapped, its corre-
sponding screen-fitting sub-page is then displayed, and this
tap-and-display process may continue a few more times until
the target of interest is found (Figures 1 (c)-(e)). During the
entire browsing process, the original page layout and context
information is preserved and scrolling is seldom needed.

There are several interesting research questions to be an-
swered in our approach. Especially, how do we divide a
large page into several smaller ones so that each of the sub-
pages fits into the screen? What parts of a page are “good”
to be put into one sub-page? What is the right number
of sub-pages in one page, since too many sub-pages in one
page is hard for the users to browse, and too few may result
in too many pen-taps during navigation? Moreover, how
is the user browsing experience with the transformed pages
in comparison with the original pages, as scrolling is nearly
eliminated but pen-taps increase?

To divide a large page into smaller ones, we adopt a variation
of the binary slicing tree [16], which we call a slicing*-tree.
The only difference between a binary slicing tree and our
slicing*-tree is that the fanout (or degree) of our tree is no
less than two and no more than a threshold value, which
we typically set to 4-12. We use the slicing*-tree to rep-
resent the organization of the set of transformed pages for
an original web page. Each internal node in the tree is a
thumbnail of the original Web page (the root) or that of an
intermediate sub-page, and each leaf node is a leaf page (a
sufficiently small block in the original web page). With this
organization, the node degree requirement keeps the number
of sub-pages in a page “about right”. Additionally, we use
the VIPS module developed by Cai et al. [12] to generate
leaf pages, each of which has a high degree of coherence.

We have implemented the slicing*-tree based transformation
module on a proxy server and have conducted initial exper-
iments using an HP iPAQ hx4700 PDA. We asked users to
perform focused search tasks and other tasks on PDAs with
and without the page transformation proxy, and compared
the task completion time and input effort. We also exam-
ined the bandwidth consumption, the time breakdown, as
well as the performance impact of the tree fanout threshold.
Our results indicate that this transformation method eases
user browsing experience and saves communication cost.

The remainder of this paper is organized as follows. We
discuss related work in Section 2 and overview our system in
Section 3. We present the slicing*-tree based transformation
algorithm in detail in Section 4 and experimental results in
Section 5. Finally, we conclude in Section 6.

2. RELATED WORK
Schilit et al. [19] classify the techniques of fitting desktop
content into a small display into four categories: scaling,
manual authoring, transducing and transforming. Scaling
can reduce scrolling, but it reduces Web page readability as
well. Manual authoring is laborious in that it requires pro-
fessional Web designers to manually tailor Web pages to fit
into particular devices. In contrast, automatic Web page re-
authoring methods, transducing and transforming, release
Web designers from the heavy manual workload. Trans-
ducing, such as AvantGo [1], translates HTML and images

into other formats, and compresses and converts images to
match device characteristics. Transforming goes further to
modify both contents and structures of Web pages originally
designed for desktop browsing to make them suitable to dis-
play on small screens.

The existing transforming methods can be further catego-
rized into three classes according to their visualization tech-
niques: single column, fisheye, and overview + detail. MS
Internet Explorer and Opera SSR are example systems that
provide a single column view. While this single column view
eliminates scrolling in one dimension, it greatly increases the
amount of scrolling in the other dimension. In comparison,
Fishnet [5] is a fisheye Web browser that shows a focus re-
gion at a readable scale while spatially compressing page
content outside the focus region, as its name suggests. In
this fisheye view, users need to scroll to move their desired
information into the focus region. Fishnet is targeted for
desktop browsing, and therefore, does not attempt to ad-
dress horizontal scrolling. Finally, the overview + detail
method splits a Web page into multiple sections and pro-
vides an overview page with links to these sections. The
overview page can be either a thumbnail image as in our
work, or a text summary of the Web page.

Both the Stanford Power Browser [8, 9, 10, 11] and the Doc-
ument Segmentation and Presentation System (DSPS) [17]
provide text summaries in the overview page and reveal the
detailed Web page content progressively. One advantage of
using text summaries is its simplicity in the display, but the
downside is that the visual context (e.g., styles, images) in
the original Web page is lost. Consequently, users’ browsing
experience on desktop PCs cannot be utilized on PDAs to
help discover the target information.

In contrast to text summaries, thumbnail overviews [6, 7,
14, 15, 18, 20] preserve the visual context information of
the original web pages. However, previous work is limited
to a two-level hierarchy with the thumbnail overview page
linked to a set of sub-pages for detailed information. When
an original Web page is large, the thumbnail overview is
either too large to fit into the small screen or too crowded
for users to identify the sections of interest. As a result,
scrolls and pen-taps may not be effectively reduced for large
pages.

Our work falls into the thumbnail overview category, but we
generalize this method to allow transformed pages to form a
multi-level hierarchy with each transformed page fitting into
the screen and consisting of a small number of visual blocks.
This generalization gives users sufficient but not overwhelm-
ing visual context information as well as reduces user input
effort. We use the VIPS algorithm [12] to segment an origi-
nal Web page into visual blocks and propose a variation of
the slicing tree to build the hierarchy of transformed pages.
The text summary overview method is complementary to
ours in that we can embed a text summary for each visual
block.

Our slicing*-tree based transformation achieves a balance
between two extremes in the previous work. One extreme,
the binary slicing tree organization [13], generates a deep
hierarchy of transformed pages with each level consisting of



Figure 2: Page transformation proxy server archi-
tecture.

two sub-pages only. With this organization, users need to
pen-tap many times to navigate down to the target sub-
pages. The other extreme uses a two-level overview + detail
hierarchy [6, 7, 14, 15, 18, 20], with the top level page con-
sisting of the hyperlinks to all of the bottom level sub-pages.
Its downside is that there may be too many sections in the
top level page so that it is hard for users to choose from.

3. SYSTEM OVERVIEW
We have implemented our page transformation system on a
proxy server. In this section, we describe the system archi-
tecture and the major components.

Figure 2 illustrates the architecture of our page transforma-
tion proxy server. We chose to implement the page trans-
formation module on a proxy server rather than on a spe-
cific PDA browser for two reasons. One is that a proxy
server is commonly used in local area networks as firewalls
or accelerators and is more powerful than PDAs. There-
fore, page transformation can be done more efficiently on a
proxy server than on a PDA and can be shared by multiple
PDAs. The other reason is that PDA users usually have
their browsers of choice and may be reluctant to switch to a
new kind of browser or to accept browser extensions. Con-
sequently, our system resides on a proxy server and trans-
parently serves transformed pages to PDAs that go through
this proxy.

As shown in Figure 2, when a PDA sends a request to a Web
site through our proxy, the proxy forwards the request and
transforms the received Web page into a tree hierarchy of
thumbnail index pages as internal nodes and leaf sub-pages
as leaf nodes. It returns the root index page to the PDA
for display and stores the other sub-pages locally. When the
user selects a region in the index page, it then serves the
user the corresponding sub-page that has been stored.

The page transformation system at the proxy consists of
four modules: page splitting, and the generation of thumb-
nail images, index pages, and leaf pages (Figure 3). The
page splitting module builds the tree representation of the
set of transformed pages, given the original web page, the
screen size, and other information. We will defer the detailed
presentation on page splitting to Section 4 and discuss only
the other three modules in this section. All of these three
modules take the tree representation, called a slicing*-tree,
as an input.

The thumbnail generation procedure first captures a thumb-
nail image of the original Web page (corresponding to the
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Figure 3: Page transformation process.

root node of the slicing*-tree). It then traverses down the
slicing*-tree to examine each node in the tree. Each node
has location attributes (ObjectRectTop, ObjectRectLeft, Ob-
jectRectWidth, and ObjectRectHeight) to record the position
and size of its corresponding block or section in the origi-
nal Web page. The procedure uses this location information
to border the corresponding blocks of the child nodes in
the thumbnail image of the parent node with color. After
that, it performs image clipping to cut out the correspond-
ing thumbnail image for each internal node. For a leaf node,
no thumbnail image is generated. After all thumbnail im-
ages are generated and blocks in them are bordered, these
images are resized to fit into the small screen.

We say that each internal node of the slicing*-tree corre-
sponds to a thumbnail image, but more accurately, it cor-
responds to an index page, or a sub-page, with the thumb-
nail image embedded. This is because in addition to the
thumbnail image, the page needs to embed hyperlinks to its
sub-pages at the corresponding sections of the image. We
generate a hyperlink for a section based on the location at-
tributes of the slicing*-tree node that corresponds to the
section.

For each leaf node of the slicing*-tree, we generate a cor-
responding leaf page. The leaf page generation procedure
extracts the source HTML code corresponding to the leaf
node from the original HTML document. It also copies the
header of the original page into the leaf page in order to keep
the original appearance of this section. Finally, it modifies
the hyperlinks in the page that point to other parts of the
original Web page so that the updated hyperlinks point to
the transformed pages correctly.

4. SLICING*-TREE FOR A WEB PAGE
After giving an overview to our page transformation sys-
tem, we focus on presenting the page splitting module, in
particular, the slicing*-tree construction, in this section.

4.1 Slicing*-Tree Representation
A slicing floorplan is a decomposition of a rectangle with
horizontal and vertical cuts (as shown in Figure 4 (a)). A
slicing floorplan can be represented as a binary tree, called
a binary slicing tree (e.g., Figure 4 (b)). An internal node
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Figure 4: (a) A slicing floorplan. (b) The binary
slicing tree of the floorplan. (c) The slicing*-tree of
the floorplan with T = 3.

in the slicing tree represents a cut, either in the horizontal
dimension or in the vertical dimension (labeled ‘h’ or ‘v’
correspondingly). A leaf node in the slicing tree represents
an atomic rectangle that has no cut through.

In comparison with the binary slicing tree, our slicing*-tree
does not require each internal node to have exactly two chil-
dren (Figure 4 (c)). Instead, it requires each internal node
has at least two children and has no more than a specific
number of children, which we denote as the threshold T .
We add this threshold based on the observation that it is
easy for users to identify in a region the sub-region of in-
terest as long as there are only a few, not necessarily two,
sub-regions present.

Formally, a slicing*-tree is a slicing tree that satisfies the
following property: for any internal node of the tree, it has
at least two children and at most T children, where T ≥ 2.

As a Web page typically consists of box-shaped sections, we
can naturally use a slicing*-tree to represent a Web page
decomposition scheme. Nevertheless, there are various ways
of transforming a Web page for the small screen given its
slicing*-tree.

First, we decide on how many levels of transformed pages
will be generated out of the original page. This level may be
different from the height of the slicing*-tree. Previous work
used a two-level hierarchy, with the top level page consist-
ing of some hyperlinks to the sub-pages and some sections
from the original page. For instance, Dress [13] studied the
problem of choosing which sections from the original page
to be put in the top level page, even though the slicing tree
they used was a binary tree of many levels. Another extreme
would be to generate a deep hierarchy of transformed pages,
with each level consists of two sub-pages only. The danger of
a two-level hierarchy is that there may be too many sections
in the top level page so that it is hard for users to choose
from. In comparison, the downside of a deep hierarchy of
transformed pages is that users need to pen-tap many times
to navigate down to the sub-page that they are interested
in. Therefore, we take the middle of the road and adhere
to the slicing*-tree hierarchy for transformation: each inter-
nal node is transformed into a sub-page and each leaf node
is a section from the original page. Since the degree of the
slicing*-tree is bounded, the depth of the hierarchy is usually
shallow, but not necessarily two, in practice.
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tree of the Web page. (c) Tree structure after
leaf extraction. (d) Final slicing*-tree after inter-
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Second, for an internal node, we decide on if we use a text
summary or a thumbnail image to represent it in the trans-
formed sub-page. We decide to use thumbnail images for
the reason of preserving the visual context information of
the original Web page. In order to save scrolling effort, we
require the size of a thumbnail image to fit into the small
screen.

In summary, a slicing*-tree represents the transformation of
a Web page as follows:

1. Each leaf node represents a leaf page transformed di-
rectly from a section in the original page. The leaf
page fits into the screen.

2. Each internal node represents a thumbnail image page
of a large section of the original page. This thumbnail
image fits into the screen. Furthermore, for each child
node, there is an embedded hyperlink pointing to its
corresponding sub-section in the thumbnail image of
the parent node.

4.2 Slicing*-Tree Construction
Having described the slicing*-tree definition and its repre-
sentation for page transformation, we proceed to present its
construction. The construction goes through three steps:
VIPS tree construction, leaf extraction, and internal node
adaptation. We describe these three steps in order.

4.2.1 VIPS Tree Construction
As the slicing*-tree nodes represent sections in a Web page,
we first need to identify sections or blocks in the page. One
way is to use the HTML Document Object Model (DOM)
tree, and another, which we use, is the VIsion-based Page
Segmentation (VIPS) tree [12]. The VIPS algorithm ex-
tracts the semantic tree structure of a web page based on
its visual presentation. Each node corresponds to a box-
shaped section (i.e., a block) and is assigned a value, Degree



of Coherence (DoC), to measure the coherence of the con-
tent in the block based on its visual perception. The larger
the DoC value is, the more semantically coherent the section
is.

As we see in Figure 5 (b), the VIPS tree of a Web page has
most of the properties of a slicing*-tree except that (1) a
leaf page may be too small or too large with respect to the
screen size, and that (2) the number of children of an internal
node may be larger than the threshold. Thus, the problem
of slicing*-tree construction becomes to first generate the
VIPS tree and then to transform it into the slicing*-tree by
addressing these two differences.

To be conservative about the leaf page size, we generate the
VIPS tree so that its leaf pages are as small as possible.
This is achieved by setting the Permitted Degree of Coher-
ence (PDoC) parameter of the VIPS algorithm to its largest
value, 10. With a large PDoC value, the VIPS algorithm
segments a Web page at a fine granularity.

4.2.2 Leaf Extraction
After the VIPS tree with small leaf pages is constructed, we
go through the leaf extraction step to transform the tree into
another one. The goal is to make each leaf page as large as
possible within the screen size limit. This is done by merging
small-sized neighboring sibling nodes in the tree. Since the
following step, internal node adaptation, does not remove
or insert any leaves, the leaves in the result tree of this step
is exactly the leaves in the final slicing*-tree. Therefore, we
name this step leaf extraction. Figure 5 (c) shows a result
tree of leaf extraction.

In this step, we traverse the VIPS tree through Depth-First
Search (DFS). For each internal node, if its size is smaller
than the screen size, we remove all of its children because
there is no need to further decompose it. Otherwise, we
examine its children and see if these children can be re-
partitioned to decrease the number of children and to in-
crease the size of each new child node within the screen size
limit. Algorithm 1 shows the leaf extraction process.

Algorithm 1 LeafNodeExtraction

Input:
Tree is a VIPS tree or a sub-tree;
sw is the screen width;
sh is the screen height;

Output:
Tree is the modified tree;

1: begin
2: root = Tree.root;
3: if root is an internal node then
4: Get the rectangle width rw and height rh of root;
5: if rw > sw or rh > sh then
6: PartitionSiblingNodes(root.childnodes());
7: for all item i ∈ root.childnodes() do
8: LeafNodeExtraction(i, sw, sh);
9: else
10: remove all the children of root;
11: end

The subroutine PartitionSiblingNodes attempts to parti-
tion an array of sibling nodes into sub-arrays with the total
size of the nodes in each sub-array fitting into the screen. If
the number of nodes in a sub-array is more than one, these

nodes will be merged into a new child node. Note that the
order of the sibling nodes in the array is unchanged through-
out partitioning and that only adjacent sibling nodes can be
merged so as to preserve the original appearance of the Web
page in terms of the spatial relationship between sections.

The problem of partitioning sibling nodes can be abstracted
into the following positive number array partitioning prob-
lem:

Definition 1. Positive number array partitioning: given
an array of positive real numbers (e1, e2, e3, . . . , en) and a
positive real number B as the bound, partition the array
into a number of sub-arrays ( (e1, . . . , ei),(ei+1, . . . , ej), . . . ,
(em, . . . , en) ) such that the sum of the elements in each sub-
array does not exceed B.

If the layout of the sibling nodes to be partitioned is vertical,
the bound B corresponds to sh and the array of numbers the
heights of the nodes. If the layout is horizontal, the bound
B corresponds to sw and the array of numbers the widths of
the nodes. Our goal is to merge the nodes in each sub-array
so that the number of resulting nodes is the minimum. This
goal translates into finding an optimal partitioning scheme
for the array partitioning problem, in which the number of
sub-arrays is the minimum among all possible partitioning
schemes.

We developed a simple greedy algorithm (Algorithm 2) to
find the optimal partitioning scheme for the array. It scans
the array and keeps a running sum of the elements scanned
so far. Whenever the sum becomes larger than B, it outputs
the index of the current element. It then resets the sum to
the current element value and continues to scan and sum.
When the algorithm finishes scanning the array, it produces
a partitioning scheme in the form of the indexes of the ele-
ments that serve as the boundaries between the sub-arrays.

Algorithm 2 GreedyPartition

Input:
array is an array of positive real numbers;
B is a positive real number as the bound;

Output:
division is an array of indexes that serve as the boundaries
between the sub-arrays;

1: begin
2: i = 0;
3: while i < array.length() do
4: sum = array[i];
5: length = 0;
6: while sum < B and i < array.length() do
7: length + +;
8: i + +;
9: sum+ = array[i];
10: if length == 0 then
11: i + +;
12: division.add(i);
13: end

We prove that our greedy algorithm is optimal. Let G be the
partitioning scheme produced by the greedy algorithm and
O be an optimal partitioning scheme. We scan the arrays
in G and O and compare them. Suppose the first pair of
different sub-arrays in G and O are SAG and SAO, respec-
tively. They start at the same element but end at different



elements. Since SAG is produced by the greedy algorithm,
its length must be larger than that of SAO. We extend SAO

to be the same as SAG. As a result, the length of the next
sub-array in O is reduced but the resulting new O has the
same number of partitions as the old O (the old O is not
optimal if the new O has a smaller number of partitions).
When this process of array scanning and sub-array extend-
ing finishes, the final O is the same as G. Therefore, G is
an optimal partitioning scheme.

4.2.3 Internal Node Adaptation
The leaf node extraction step examines the node size with
respect to the screen size, and the following step, internal
node adaptation, adjusts the tree to satisfy the node degree
requirement as well as to reduce the height of the tree as
much as possible.

Internal node adaptation (Algorithm 3) is done through a
DFS traversal on the tree. If a node has more than T chil-
dren, the algorithm combines some children by adding more
levels of internal nodes between the node and these children
so that it has exactly T children. If a node has fewer than
T children, the algorithm attempts to increase its degree up
to T . Note that node degree decrease to T is required for a
slicing*-tree, but node degree increase to T is not. The pur-
pose of increasing node degree within the limit is to reduce
the height of the tree.

Algorithm 3 InternalNodeAdaptation

Input:
Tree is a tree constructed by leaf node extraction;
T is the fanout of the tree;

Output:
Tree is the modified tree;

1: begin
2: root = Tree.root;
3: if number of children of root > T then
4: CombineChildren(root);
5: pushup = TRUE;
6: while 0 < number of children of root < T and pushup ==

TRUE do
7: pushup = PushUpGrandChildNodes(root);
8: for all item i ∈ root.childnodes() do
9: InternalNodeAdaptation(i, T );
10: end

The node degree decrease adjustment is done through the
CombineChildren(root) procedure in Algorithm 3. First, it
removes all children of root. Then, it partitions the array of
these children to T disjoint sub-arrays with each sub-array
having the same number of nodes. At this point, it begins
to add T children to root: if a sub-array consists of more
than one node, construct a parent node for them and add
the new parent node to be a child node of root; if a sub-array
contains a single node, directly append it as the child node
of root. Note that this CombineChildren(root) procedure is
different from PartitionSiblingNodes in Algorithm 1 in that
the children nodes here are not partitioned based on their
sizes or merged into a new node.

The node degree increase adjustment is attempted in the
PushUpGrandChildNodes(root) procedure when a node root
has fewer children than T . The principle of pushing up
grandchild nodes is All or Nothing: either remove the child
node c of root and push up all children of c to be the chil-

dren of root, or keep c at its place and do not push up any
children of c. This principle is to preserve the semantic co-
herence between sections in the original Web page.

Specifically, we define a child node c to be removable if (1)
c is an internal node that has the the same label (‘v’ or
‘h’) as its parent node p, and (2) the sum of the degree
of c and the degree of p minus 1 is no larger than T . If
a node has multiple removable child node candidates, the
priority of removing them is determined first by the number
of descendant leaf nodes and then by the size of the node.
The intuition is to reduce the height of the tree, especially
the depth of the leaf nodes and that of large sections, so that
the number of pen-taps can be reduced when users access
the transformed pages.

After sorting the removable child node candidates of root by
the descending priority, the PushUpGrandChildNodes(root)
procedure removes them one by one and pushes up their
children until the sum of current degree of root and the
degree of the next candidate c to remove exceeds T +1. The
procedure returns TRUE if it has pushed up one or more
grandchildren of root. Otherwise, it returns FALSE.

In Figure 5 (c), node 2 has the same label as its parent node
0 and the sum of the degrees of node 2 and node 0 minus 1 is
not larger than T , 4. Therefore, node 2 is a removable node.
The resulting slicing*-tree after internal node adaptation is
shown in Figure 5 (d), where node 2 is removed and its
children C and D are pushed up.

5. EXPERIMENTAL EVALUATION
In this section, we report our experimental results about our
slicing*-tree based page transformation system.

5.1 Experimental Setup
As the major goal of our system is to improve the browsing
experience of PDA users, we recruited ten graduate students
from the Computer Science department to be our partici-
pants. These participants are experienced Web users. They
are familiar with Web browsing on desktop computers and
have a history of accessing the Internet using small devices.
They had not used our system before the experiments. We
divided the ten participants into two groups, with one group
of five browsing on PDAs connected through our transfor-
mation proxy and the other group of five directly accessing
the Internet.

The devices all of the participants used were HP iPAQ hx4700
Pocket PC with a 624 MHz processor, 128 MB ROM, 64 MB
RAM, and 4.0’ Transflective VGA (480 × 640 pixels) TFT
display, running Internet Explorer on Windows Mobile 2003.
The transformation proxy server was on a PC with an Intel
P4 3.20 GHz processor and 1.00 GB memory. The PDAs
had a wireless connection and the proxy was on a wireline
local area network.

We designed ten browsing tasks, including five focused search
tasks and five reading tasks, for each of the ten participants
to perform. These tasks and the Web pages involved are
listed in Table 1. Tasks 1 to 5 are focused search tasks and
tasks 6 to 10 are reading tasks. The focused search tasks are
similar to those conducted for the Stanford Power Browser



Task Involved Web page Task description

1 ebay.com Find the link on "How to register".

2 travelocity.com Find the section "Last Minute Deals".

3 infoSpace.com Find the option box "Find a business by Name".

4 iwon.com Find the name of today's $100,000 winner.

5 hkex.com.hk Find today's Hang Seng Index Movement Chart.

6 CFP of CIKM2005
conference Website Read this Call for Paper page.

7 cnn.com Read the news "China to all visits to Taiwan".

8 cnn.com Read the news "Pentagon vows to probe Saddam photos".

9 ebay.com Read the product description in the first page of list of soaps.

10 ust.hk Read ITSC Survey on HKUST Notebook/Desktop Ownership Program 2005.

Table 1: 10 tasks for Participants to Complete on
PDA.

1 yahoo.com 2 altavista.com 3 yesasia.com
4 ebay.com 5 iwin.com 6 travelocity.com
7 americangreetings.com 8 bizrate.com 9 earthlink.net

10 google.com 11 cnn.com 12 hotmail.com
13 msn.com 14 askjeeves.com 15 lycos.com

Table 2: 15 tested popular Web pages.

[8, 9, 10, 11]. Focused search tasks require the users to look
for an object, like a button or a piece of information, on a
given Web page. In focused search tasks, most of the user
interaction time is spent on searching. The reading tasks
aimed at testing the scenarios in which the visual context in
the original Web page has little impact, because the users
are given the URL directly and know the location of their
interests at the beginning. In the reading tasks, most of
the user interaction time is spent on content viewing. Addi-
tionally, we selected 15 index pages from popular Web sites
[14] to further study the characteristics of the transformed
pages in practice. These Web sites are listed in Table 2.
Our experiment is comparable with previous work [10, 11,
14] considering the number of participants, the number and
the design of tasks, and the source of the original Web page.

In our experiments, we asked the participants to each per-
form the ten tasks and compared the average performance of
browsing with and without our page transformation proxy.
We use task completion time, input effort, and bandwidth
consumption as the performance metrics for comparison.
The task completion time is measured after the initial URL
is entered until the user completes his task. The input ef-
fort is measured in terms of number of pen moves, including
taps on the display and pulls up and down on the scroll
button. The bandwidth consumption for a task is the num-
ber of bytes received at the client device during the task
completion time.

To study the performance of our system in more detail, we
further divide the task completion time into three parts:
user interaction time on the client device, processing time
at the proxy, and data transmission time on the network.
The user interaction time is the time the user spends on
pen actions and content viewing. In addition, we tested the
effect of the parameter T setting, as it is the threshold for
the degree of a slicing*-tree.

5.2 Performance of Page Transformation
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Figure 6: Average task completion time, T = 8.
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Figure 7: Average number of pen moves, T = 8.

Average task completion time: Figure 6 shows the av-
erage task completion time for browsing methods with and
without our proxy. Our system achieved a shorter task com-
pletion time in all of the ten tasks, with 47% improvement
on the focused search tasks and 22.7% improvement on the
reading tasks. Our method is especially helpful in reducing
the task completion time when the target in the task is an
image, a chart, a controller-like textbox or other noticeable
visual items, or when the users are familiar with the original
Web pages. The task completion time was reduced because
the time-consuming vertical and horizontal scrolling was al-
most completely eliminated on the transformed pages. Also,
users could find their interests easier with the clear visual
context.

Input effort: Figure 7 illustrates the average number of
pen moves performed for each task. In nine out of the ten
tasks, our system achieved a smaller number of pen moves.
The improvement was 50% for the focused search tasks and
28.4% for the reading tasks. When the transformed Web
pages are browsed, the number of pulls on the scroll bar is
zero and the number of taps possibly increases because the
users need to switch between pages by selecting links and
pressing the back button. Since a pen tapping is instanta-
neous and is easier than holding the pen to pull on the scroll
bar, this input effort reduction in our system is potentially
unquanlified by the number of pen moves.

Bandwidth consumption: Figure 8 shows the bandwidth
consumption of each task. When the original Web page is
browsed, the amount of data received at the client device is
the size of the original Web page including the HTML page,
its embedded images and style sheets. When transformed
pages are browsed, it is the size of transformed pages chosen
by the user including some index HTML pages, leaf HTML
pages, and embedded thumbnail images. Our system saved
bandwidth consumption in seven out of the ten tasks, and
the average saving was 18.9%. When the original Web page
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Figure 8: Bandwidth consumption, T = 8.

Time breakdown for each task

Task number

Figure 9: Time breakdown, T = 8.

consisted of mainly text and few images, the bandwidth sav-
ing was small or negative (e.g., in task 6).

Page transformation time: Figure 9 shows the break-
down of the task completion time. The processing time
spent on page transformation at the proxy was only a small
portion (less than 10%) of the overall task completion time.
To further study the transformation processing time, we ex-
amine it for the fifteen selected Web pages with different T
values in Figure 10. In this figure, we see that the process-
ing time on page transformation drops as T increases. This
is because the height of the slicing*-tree decreases when the
maximum fanout increases. As a result, the time spent on
generating thumbnail images is reduced. The improvement
slows down as T becomes even larger, because it does not
reduce the tree hight much any more. Also, the layout of
the original Web page affects the transformation time. For
instance, a large and complex web page such as cnn.com
(Bar 11) takes the longest time and a simple one such as
google.com the shortest (Bar 10). The processing time of
google.com remains the same as T increases, because the
layout of google.com is so simple that its slicing*-tree does
not change with different T values.

Processing time at the proxy
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Figure 10: Processing time at the proxy.

Web
page

Height of slicing*-treeSize of original
page (KByte)

Total size of
transformed pages,

T=8 (KByte)T=4 T=6 T=8
1 3 2 2 95 336

2 3 2 2 22 71

3 4 3 3 138 391

4 6 5 4 386 340

5 5 4 3 195 472

6 3 2 2 196 348

7 4 3 2 146 374

8 5 4 4 149 216

9 4 3 2 168 77

10 2 2 2 16 237

11 5 4 4 238 770

12 2 2 2 31 80

13 4 3 3 133 448

14 4 3 2 43 75

15 3 2 2 118 362

Table 3: Characteristics of each tested Web page.

To study the characteristics of transformed pages in prac-
tice, in Table 3, we list the heights of the slicing*-trees of
the fifteen Web pages with various T values, the sizes of
the original Web pages, and the sizes of the transformed
pages. The numbers confirm that the tree height in practice
is small but not necessarily two. When T increases, the tree
height decreases. The total size of the transformed pages
is usually a few times larger than that of the original page.
However, because only the pages chosen by the user will be
transferred to the client device, our system actually reduced
the amount of transmission in the ten tasks, as previously
shown in Figure 8.

6. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a slicing*-tree based page
transformation method for improving Web browsing on small
terminals. In our approach, a Web page is transformed
into a set of thumbnail index pages and leaf pages that
form a multi-level tree structure with bounded node degree.
We have implemented our algorithm in a proxy server and
have demonstrated by experiments that our approach signif-
icantly improves user browsing experience in terms of task
completion time, input effort, and network bandwidth con-
sumption. In the future study, we plan to combine text
summaries with thumbnail images so that users can locate
the target blocks more accurately and quickly.
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