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Fig. 1. Given an empty room and only a few specified object categories (Left), our system leverages activity-associated object relation graphs
learned from a 2D floor plan database to suggest object combinations and then generates their layout masks (Middle) to guide adaptive creation
of 3D scenes (Right).

We present a system for adaptive synthesis of indoor scenes given

an empty room and only a few object categories. Automatically sug-
gesting indoor objects and proper layouts to convert an empty room

to a 3D scene is challenging, since it requires interior design knowl-
edge to balance the factors like space, path distance, illumination
and object relations, in order to insure the functional plausibility
of the synthesized scenes. We exploit a database of 2D floor plans

to extract object relations and provide layout examples for scene
synthesis. With the labeled human positions and directions in each
plan, we detect the activity relations and compute the coexistence

frequency of object pairs to construct activity-associated object
relation graphs. Given the input room and user-specified object
categories, our system first leverages the object relation graphs and
the database floor plans to suggest more potential object categories

beyond the specified ones to make resulting scenes functionally
complete, and then uses the similar plan references to create the
layout of synthesized scenes. We show various synthesis results

to demonstrate the practicability of our system, and validate its

usability via a user study. We also compare our system with the
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state-of-the-art furniture layout and activity-centric scene repre-

sentation methods, in terms of functional plausibility and user
friendliness.
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1 INTRODUCTION

Indoor scene synthesis is an important problem in computer
graphics and has received a great deal of attention lately.
3D virtual scenes that enable daily human activities are of
high demand in various applications like interior design and
3D game production. Given a database of 3D scene models,
to create such scenes, it generally requires solving two sub-
problems: first select a proper subset of furniture objects,
and then place them into a given room with a proper layout.
Achieving these two steps manually is time consuming. De-
signing quality 3D scenes is even challenging for novice users,
since this process requires interior design knowledge to fulfill
the functional demands while satisfying the physical space
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constraints. Such users can greatly benefit from systems that
adaptively explore proper indoor objects and their layouts to
synthesize 3D scenes.
The existing works on 3D scene synthesis have mainly

focused on addressing either of the above two subproblems.
To explore proper objects for an indoor scene, some works aim
to suggest new objects based on the statistic object-object
relations, with some existing furniture [Fisher and Hanrahan
2010] or a reference scene [Fisher et al. 2012]. Besides, some
other works focus on the human-object relations to explore
indoor objects based on certain actions (e.g., [Fisher et al.
2015; Ma et al. 2016; Savva et al. 2016]). On the other hand,
some researches leverage interior design guidelines for the
arrangement of a given set of indoor objects [Merrell et al.
2011; Yu et al. 2011], whose manual selection, however, is a
tedious task especially for novice users.
Due to the lack of coordination mechanisms between the

current solutions to such two subproblems, naively combining
these methods might easily cause undesired results. For exam-
ple, if the object exploration step returns too many furniture
objects, the layout step might create a too crowded scene.
Moreover, the current object exploration methods focus more
on pairs of directly related objects, e.g., a PC on a desk or a
human sitting on a chair and using a desk, while objects with
activity relations like bookshelf-chair-desk groups are rarely
concerned about. In addition, guidelines in the current lay-
out methods only leverage partial interior design knowledge
focused mainly on object-object relations, without consider-
ing function or activity related rules like anti-backlighting
and path optimization and thus possibly resulting in scenes
that are spatially well arranged but are not very suitable for
certain activities (e.g., watching TV).

To address these problems, we present a novel indoor scene
synthesis system that is able to adapt furniture exploration
and layout creation with respect to a given empty room with
the door and/or window specifications. To reduce the amount
of user intervention, users only need to specify a small number
of required object categories, with an optional number (one by
default) of objects per category, and our system automatically
suggests other object categories that are closely related to
the existing categories. This design choice also enables our
system to automatically determine the scene type of a whole
or certain area of the given room, thus reducing the user
intervention of selecting many scene type tags when creating
large rooms with subareas of different scene types. This is
achieved by exploiting the knowledge hidden in a database of
2D floor plan designed by professionals for different scenes.
The scene examples in the floor plans also contain the latent
activity relations of object categories. To suggest a proper
set of objects, our system first determines the scene type of
the input room according to the room size and the quantity
of each specified object. To make the auto-completion of
object categories more powerful, we introduce and use an
activity-associated object relation graph for each scene, which
captures not only the object-object relations used in the
previous works [Liu et al. 2014; Xu et al. 2014] but also the

relations between objects that are not in close proximity but
related by a certain activity (e.g., a bookshelf to a desk for
reading). We also derive the layouts from the 2D floor plan
database by considering the positions and sizes of windows
and doors, which are seldom considered in the existing indoor
scene synthesis works. The layouts of the database floor plans
with the rooms of similar capacity to the input one are finally
weighted and combined to guide the placement of the explored
objects (see Figure 1).

We show the practicability of our system with various syn-
thesis results. A user study was also conducted to evaluate
our system compared to manual scene creation. We also com-
pared our system with the state-of-the-art furniture layout
method [Merrell et al. 2011] and activity-centric scene repre-
sentation [Savva et al. 2016], in terms of functional plausibility
of synthesized scenes and user friendliness of the systems.

We claim the following contributions in this work:

∙ An object relation graph representing objects with
activity relations and coexistence frequencies, to en-
able adaptive object suggestion given a room and a
few specified object categories.

∙ A 2D floor plan database that enables object relation
graph construction and provides layout examples for
layout creation of the synthesized scenes.

∙ An end-to-end system that adaptively creates 3D
scenes, and support other applications like indoor
scene editing and activity animation creation.

2 RELATED WORK

Contextual Scene Understanding. Contextual scene un-
derstanding has become an important technique for indoor
object organization and scene synthesis. Several data-driven
approaches attempted to model the context of indoor objects
or their spatial relationships from existing scenes, e.g., to
encode semantic scene structures [Fisher and Hanrahan 2010;
Fisher et al. 2011]. Liu et al. [2014] presented an algorithm
that uses a probabilistic grammar learned from examples, for
hierarchical decomposition of a scene into semantic compo-
nents. Xu et al. [2014] proposed to organize a heterogeneous
scene collection by clustering the scenes based on a set of
extracted focal points, which are used to represent substruc-
tures in a scene collection. The contextual information can
also be used to turn a freehand sketch to semantically valid
and well arranged 3D scenes [Xu et al. 2013], or for automatic
semantic modeling of indoor scenes from a sparse set of low-
quality RGB-D images [Chen et al. 2014]. The Imagining the
Unseen system [Shao et al. 2014] was proposed to hallucinate
geometry in the occluded regions of a scanned scene by glob-
ally analyzing the physical stability of the resultant object
arrangements. In our work, we extract object relation graphs
to represent the coexistence and activity relations of pair-wise
objects, similar to the current scene structure representation
methods [Liu et al. 2014; Xu et al. 2014]. However, our object
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Table 1. A summary of differences between our work and the closely related works.

[Fisher et al. 2012] [Xu et al. 2013] [Savva et al. 2016] Ours

Object
exploration

Scene example Sketch Posed agent Few specified objects

[Merrell et al. 2011] [Chen et al. 2015a] [Fisher et al. 2015] Ours

Layout
creation

Layout guidelines Indoor image example Placed agents Floor plan examples

[Merrell et al. 2011]
[Chen et al. 2015a]

[Fisher et al. 2012]
[Xu et al. 2013]

[Fisher et al. 2015]
[Savva et al. 2016]

Ours

Relation
prior

Object position/direction
relation

Object co-existence
relation

Object-activity
relation

Activity-associated
object relation

relation graphs are activity-associated and capture poten-
tial relations between objects even if they are not in close
proximity or directly interacted by a posed human agent.
Activity-Centric Analysis. Activity-centric understand-

ing of man-made objects and indoor environments has been a
popular research topic in recent years. Based on the concept
of affordance, several techniques have been proposed to use
human-object interactions for various applications like pose
estimation [Kim et al. 2014], shape analysis [Xie et al. 2014],
object reshaping [Zheng et al. 2016], and scene reconstruc-
tion [Xu et al. 2015]. Understanding actions in 3D scenes
has also been studied. For example, Grabner et al. [2011]
proposed to learn an affordance detector and apply it to
scene analysis. Savva et al. [2014] presented an action map
over a scene to predict a likelihood of a given action taking
place over every location in a 3D environment. Besides, Hu
et al. [2015] presented an interaction context descriptor to
explicitly represent the geometry of object-object interactions.
The state-of-the-art works have been able to learn graphs
encoding relations between human poses and object geome-
tries, and represent these human-object relations in the form
of action + noun descriptions [Savva et al. 2016], which is
closely related to our work. Such descriptions could accurately
determine what kind of objects should be interacted to, when
an action occurs. However, such an accurate definition to
describe the functional demands of a room might be tedious
for users to give. In contrast our system only requires a small
set of object categories to indicate the user’s intension easily.
Scene Synthesis. Synthesizing indoor scenes by furniture
arrangement has practical applications such as interior design
and online games. Several systems like Make it Home [Yu
et al. 2011] and the interactive furniture layout [Merrell et al.
2011] employed the pre-defined guidelines or the relations
learned from a 3D scene database, to assist users in suggest-
ing arrangements for a given set of furniture objects. Fisher
et al. [2012] presented an example-based synthesis method to
produce a diverse set of plausible new scenes given an existing
3D scene as input. Other systems like Magic Decorator [Chen
et al. 2015b] and Image2Scene [Chen et al. 2015a] aimed to
reveal the indoor scene styles like colors and layouts from
indoor scene images. Besides, there exist some works on layout
computation for large scale scenes like buildings and urban

faces [Peng et al. 2014; Yang et al. 2013]. Our work differs
from these previous works in terms of both inputs (an empty
room with user-specified object categories versus a given set
of 3D furniture objects already or to be placed into a room)
and methodologies (activity-associated object relations versus
relative positions of object pairs).
Using human factors for scene synthesis has been getting

more and more popular, since the nature of indoor scenes is
to meet the demand of human activities. Jiang et al. [2012]
proposed to use human context for object arrangements by
learning how objects relate to human poses based on their
affordances, ease of use, and reachability. Fisher et al. [2015]
presented a method to generate 3D scenes that allow the
same activities as real environments represented as noisy and
incomplete 3D scans. Savva et al. [2016] proposed to learn
a probabilistic model connecting human poses and arrange-
ments of object geometry, for jointly generating 3D scenes
and interaction poses. Ma et al. [2016] provided a framework
for action-driven evolution of indoor scenes focusing on the
object placement variations caused by a sequence of actions.
Our system focuses on furniture-level layout of indoor scenes
with the objects and their layouts adaptively determined. In
our system, different sizes of input room or different quantities
of a certain object category can lead to variations of synthe-
sized scenes due to the adaptive scene type determination
and object exploration. Besides, the 2D floor plan database in
our system provides layout examples following interior design
knowledge and thus being able to guide object arrangement
for the given room and explored objects.

In Table 1, we have summarized the differences of our sys-
tem from closely related works in terms of the conditions for
object exploration, layout creation, and the required relation
priors. Compared with the works based on activity relations
[Fisher et al. 2015; Savva et al. 2016], our work performs the
object-level inference for scene synthesis, instead of requiring
user manipulation on human agents. Compared with the work-
s based on object co-existence relations [Fisher et al. 2012;
Xu et al. 2013], our work uses object co-existence frequency
to enhance the object relations which are associated by mean-
ingful activities. Compared with the works focusing object
arrangement [Chen et al. 2015a; Merrell et al. 2011], our work
can also implicitly describe the potential function/activity of
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Fig. 2. Pipeline of our system. We use a 2D floor plan database to generate activity-associated object relation graphs for each type of scene.
Given an empty room and a few user-specified object categories, our system employs the object relation graphs to explore more proper object
categories and generate their layouts to guide scene synthesis.

the synthesized scenes thus to facilitate implementations like
activity animation creation. Given these differences, our sys-
tem requires only a very sparse specification of major object
categories, and can automatically create scenes with enriched
objects adapted to the given room.

3 OVERVIEW

As illustrated in Figure 2, our system consists of two stages:
an off-line stage for extracting object relation graphs from
a 2D floor plan database for each type of scene; an on-line
stage for using the extracted object relation graphs to explore
proper objects and similar floor plan examples to guide the
synthesis of 3D scenes.

In the first stage, we collect a 2D floor plan database with
layouts designed by professionals, including eight types of
scenes. To extract the activity-related prior of indoor objects
behind these floor plans, we first segment and label all the
indoor objects in each plan. As a cue to reveal the interaction
relations between objects, we also label the human positions
and directions inside floor plans. For some objects such as
wardrobe and chair, human-object relationship is rather fixed
and can be determined after object annotation. However,
for other objects like sofa, there might be multiple potential
human positions, and their positions/directions thus might
change across floor plans, depending on surrounding interac-
tive objects. Hence we place some human agents with proper
positions and front directions to ensure that every existing
object in the floor plans can be interacted with a certain
placed human agent (Section 4.1). We also have a 3D indoor
object database for scene synthesis, with eighteen categories
of furniture-level objects. With such a floor plan database,
we count the statistics on the coexistence frequency of each
pair of object categories, and also detect the activity relations
of object pairs using the placed human agents in each floor

plan. Afterwards, we construct object relation graphs with
the object categories as the nodes and their relations as the
edges with different weights to describe their relation degrees
(Section 4.2). Besides, we also extract the room feature and
layout of each 2D database floor plan for the subsequent
adaptive scene synthesis (Section 5.1).
In the second stage we use our 2D floor plan database,

3D object database and object relation graphs to generate
scenes adapted to the given empty room and user-specified
object categories, with one (by default) or multiple objects
per category. Our system first determines the scene type
of the given room based on the input room size and the
specified object categories in terms of their quantity (Section
5.2). Then, an object exploration algorithm is employed to
adaptively suggest more proper object categories beyond the
user-specified ones via the object relation graphs and the floor
plan database, to make the input room have more closely
related objects and a reasonable rate of occupancy. Finally,
we use the room feature of the input room to find several
similar floor plan examples. The layouts of these examples are
weighted and combined to create the layout of the input room,
and all the explored objects are then placed into the room
to generate the synthesized scene (Section 5.3). Our system
naturally enables scene synthesis and editing. For example,
the objects that are added into an existing room can be
automatically re-arranged. We also show the object relation
graphs can benefit animation creation of indoor activities by
seeking for interactive related neighbors in the graph starting
from a certain object (Section 6).

4 ACTIVITY-ASSOCIATED OBJECT RELATION
GRAPHS

Activity plays an important role in revealing human-object
relations. Our goal is to discover activity-associated objects
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Fig. 3. In each room of our 2D floor plan database, we manually label
the furniture objects, potential human positions (red dots) and their
front directions (red arrows), and the free areas that can be potentially
used for object placement.

and encode their relations as a graph. Each type of scene has
its own object relation graph as a result of the functionality
of the scene. Such a representation does not need to define
any noun of action or activity, as done in [Savva et al. 2016].
Instead, we deem that activities are the latent relations em-
bodied in the layouts of 2D floor plans. In this manner, given
a certain object category, we can find its activity-related cat-
egories from the achieved relation graph to enrich the scene
variations.

4.1 2D Floor Plan Database

We collected eight scene types of professionally designed floor
plans to establish our 2D database, including bedrooms, living
rooms, dining rooms, study rooms, offices, conference rooms,
gyms and dining halls. These floor plans were collected from
the websites of the house-builders and interior design compa-
nies. We denote these scene types as 𝒮 = {𝑠1, · · · , 𝑠8}. These
floor plans have the associated scale information and well
designed furniture layouts following interior design knowledge
and fully considering the affordance of each room. We lever-
age these commonly seen home and public scenes to provide
potentially related object groups and layout references in
our system. To this end, as illustrated in Figure 3, we first
manually labeled the categories, positions and sizes of the
indoor objects, windows and doors in each plan. Next we man-
ually placed human agents with proper positions and front
directions into each floor plan. These agents are important
for detecting activity-related objects. Since most of the floor
plans only contain the basic furniture but we would also like
to consider daily appliances like water dispenser and refriger-
ator, we invited a professional designer to assist in labeling
some free areas (Figure 3) where some appliances might be
placed without influencing the use of existing furniture in
each floor plan.

4.2 Relation Extraction

Objects labeled in the 2D floor plans belong to some basic
furniture categories. To enrich the variations of the synthe-
sized scenes, we also collected a 3D object database (18 object
categories in our system), denoted as 𝒪 = {𝑜1, · · · , 𝑜18}. It
contains more object categories than the existing ones in the
2D database floor plans, and objects of these categories can
be placed in certain labeled free areas. For each scene type,

Table 2. Some highlighted parameters.

Set
AVG.
area

Graph
weight

Feature Area

Scene
type

𝒮 𝜃𝑠 𝑊𝑠 Scene f𝑟 𝜃𝑟

Object
category

𝒪 𝜃𝑐 Object f𝑜𝑏𝑗 𝜃𝑜

Fig. 4. Part of an object relation graph (partial nodes) extracted from
the type of bedroom floor plans. We show the pair-wise object relation
weight matrix {𝑊𝑠(𝑜𝑖, 𝑜𝑗)} (top) and the graph which only contains
the edges whose weight is greater than 0 (bottom). Note the edges
with greater weight are heavier.

a fully connected graph can be constructed, with each node
representing one object category in 𝒪. Our goal in this step is
to determine the relations between each object category pair
𝑜𝑖 and 𝑜𝑗 as the weight of their edge 𝐸(𝑜𝑖, 𝑜𝑗). We take into
account both the coexistence frequency and activity priors
to describe such object relations. In Table 2, we highlight
some parameters of scene type and object category as well as
the scene and object, which will be used in the subsequent
discussions.

Specifically, if two categories of objects 𝑜𝑖 and 𝑜𝑗 are often
coexistent and simultaneously used by a human, or have
the matched functional purposes, they would have a large
edge weight. To compute the activity priors, denoted as a
binary matrix 𝐴(𝑜𝑖, 𝑜𝑗), we use the placed human agents in
each floor plan to first detect the interactive objects. For
example, a lying agent in a bed has a touch area (i.e., within
the arm’s reach) covering a night table and a visual area
(i.e., all regions in front of the agent) covering a TV set,
𝐴(𝑜𝑖, 𝑜𝑗) = 1 for the bed-night table pair and bed-TV set
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pair. Besides, we also define two kinds of functional purposes:
to stay in a certain object for a long time (e.g., beds, chairs,
couches, gym and play equipments); to fetch something from
an object with a short stay (e.g., bookshelves, wardrobes,
water dispensers, and refrigerators). We observe that objects
with the first functional purpose can be related to switch
one activity to the other one, while objects with the second
functional purpose can be related to objects with the first
purpose so as to fulfill the activity after fetching something
(e.g., a bed or a chair can be related to a bookshelf for reading
activity). In this way, 𝐴(𝑜𝑖, 𝑜𝑗) = 1 if 𝑜𝑖 and 𝑜𝑗 both have the
first functional purpose or one of them has the first purpose
while the other has the second.

However, the object relations obtained by the functional
purposes might not be always correct. For instance, according
to the functional purposes alone, a refrigerator is related to
a bed, but there is no natural activity associated with such
an object pair. Fortunately, the 2D floor plan database can
be used to address this problem by counting the objects’
coexistence frequency. This is because activities are usually
done in the same room. For example, a refrigerator is more
likely to be related to a chair aside a dining table in a dinning
room rather than a bed in a bedroom. Benefited from the
labeled objects in each floor plan, the coexistence frequency is
easy to calculate for most of the objects, except the free areas
which are labeled to place certain appliances like piano and
easel, which are not contained in the floor plans. We compare
the sizes of the labeled free areas with the sizes of those
appliances to give the existence probability of such appliance
categories in each floor plan. Let 𝑜′ denote a certain category
of such appliances. We use the averaged short and long edge

lengths 𝑙𝑜
′

𝑠 and 𝑙𝑜
′

𝑙 of floor projections of all the objects in

this category to define the object size feature f𝑜
′

𝑜𝑏𝑗 = {𝑙𝑜
′

𝑠 , 𝑙𝑜
′

𝑙 }.
Similarly, for a floor plan 𝑟 with a free area we calculate its

size feature f𝑜𝑏𝑗 and define 𝑒𝑥𝑖𝑠𝑡(𝑜′, 𝑟) = ||f𝑜
′

𝑜𝑏𝑗 − f𝑜𝑏𝑗 ||22 to
describe the existence probability of object category 𝑜′ in 𝑟.
Note that we also filter out the irrational existence relations
in a certain scene type, e.g., we set all 𝑒𝑥𝑖𝑠𝑡(𝑜′, 𝑟) = 0 for
refrigerator in each floor plan of the conference room. For the
other objects which appear in the floor plan database, we set
𝑒𝑥𝑖𝑠𝑡(𝑜, 𝑟) = 1 if object category 𝑜 is labeled in a floor plan
𝑟 and 𝑒𝑥𝑖𝑠𝑡(𝑜, 𝑟) = 0 otherwise. In this way, we obtain the
coexistence frequency 𝑃 (𝑜𝑖, 𝑜𝑗 |𝑠) of scene type 𝑠 as follows:

𝑃 (𝑜𝑖, 𝑜𝑗 |𝑠) =
∑︀

𝑟∈∇ 𝑒𝑥𝑖𝑠𝑡(𝑜𝑖, 𝑟) · 𝑒𝑥𝑖𝑠𝑡(𝑜𝑗 , 𝑟)
|∇| , (1)

where ∇ = {𝑟} is a set of floor plans in scene type 𝑠. Then,
the weight of their edge 𝐸(𝑜𝑖, 𝑜𝑗) for scene type 𝑠, denoted
as 𝑊𝑠(𝑜𝑖, 𝑜𝑗), is the product of the coexistence frequency
𝑃 (𝑜𝑖, 𝑜𝑗 |𝑠) and activity priors 𝐴(𝑜𝑖, 𝑜𝑗), i.e., 𝑊𝑠(𝑜𝑖, 𝑜𝑗) =
𝑃 (𝑜𝑖, 𝑜𝑗 |𝑠) ·𝐴(𝑜𝑖, 𝑜𝑗). For the fully connected graph with al-
l object categories as the nodes, we cut the edges whose
𝑊𝑠(𝑜𝑖, 𝑜𝑗) = 0 and remove the isolated nodes to obtain an
object relation graph. See Figure 4 for an example of the

Fig. 5. Top: we use the labels in the floor plan to generate a layout
mask. Bottom: 2D embedding of the layouts of the bedroom floor
plans. We cluster them into two groups and show two cases in each
group.

weight matrix and corresponding relation graph. The activity-
associated relations contain both the direct interaction re-
lations and the activity-associated contexts. For example,
we can find a direct interaction relation between chair and
dresser that can be interactive with a static human, and
an activity-associated context between wardrobe and chair-
dresser indicating a dynamic process of dressing-up activity
from our relation graph.

5 ADAPTIVE SCENE SYNTHESIS

Similar to the recent furniture layout methods [Chen et al.
2015a; Merrell et al. 2011; Yu et al. 2011], our system focuses
on furniture-level object arrangement. Since the layouts in
our 2D floor plan database were designed by professionals, the
design of such layouts has already followed not only arrange-
ment guidelines but also the reasonable rate of occupancy
and the activity-related priors such as anti-backlight when
placing TV set, optimizing the indoor pathway, etc. This
motivates us to leverage the 2D floor database to adaptively
explore proper objects and their layouts for scene synthe-
sis, using the activity-associated object relation graphs. To
achieve this, our system first determines the scene type of
a given room, then explores more proper object categories
besides the user-specified object categories to enrich the scene,
and finally uses the layout examples extracted from the 2D
floor database to seek for the proper objects for the suggested
object categories, and guide the arrangement of the explored
objects to synthesize 3D scenes. This process is adaptive to
the given room and user-specified objects. In other words, if
the user already specifies enough object categories leading a
proper ratio of occupancy for the given room, our system will
not suggest more objects but focuses on generating a proper
layout to place these specified objects.
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Fig. 6. Adaptive scene synthesis. (a) the input room and specified object categories. (b) based on the object relation graph, more proper object
categories (green) which are related to the specified ones (blue) are explored. (c) a proper layout mask is generated by weighted amalgamating the
database floor plans with the similar room features. We show the top-4 floor plans. Note that there might not exist a database floor plan that has
the same room and layout as the generated result. (d) objects are placed into the room guided by the layout to synthesize a 3D scene.

5.1 Room and Layout Description

We observe that the layout of the scene depends at least
on the room size, positions of windows and doors, and the
areas of all furniture. For simplicity, let us assume all floor
plans in our database are rectangular, with

∑︀
𝜃𝑜 and 𝜃𝑟 as

the areas of all placed objects and the room, respectively.
To describe the similarity of two rooms, we thus define a
room feature f𝑟 = {∠(w,d), 𝑟𝑠, 𝑟𝑒, 𝜙}, where ∠(w,d) is the
included angle between two vectors w and d, which are from
the home center to the average positions of the windows and

doors, respectively (as shown in Figure 6 (a)), 𝑟𝑠 =
∑︀

𝜃𝑜
𝜃𝑟

is

the ratio of occupancy, 𝑟𝑒 is the ratio of the short edge to the
long edge of a room, and 𝜙 = 𝜃𝑟

𝜃𝑟+𝜃𝑠
is a scale factor, where

𝜃𝑠 is the average area of all rooms in the same scene type
to make the scale factor 𝜙 can describe the relative size of a
room in its scene type.
The 2D floor plans also provide plausible layout examples

for different rooms. For each database floor plan in the same
type, we obtain a binary mask in which the areas placed with
furniture are set to 1, while the other areas are set to 0 (see
Figure 5 (top)). Then we align all these masks in the same
type of scenes by the long edges of the rooms, and make the
barycenter of the room to be in the bottom-right, by hori-
zontally/vertically flipping the masks if needed. After that,
each aligned mask is resized to a 10 × 10 matrix, denoted
as 𝑀 , such that layouts from different floor plans can be
amalgamated to a new layout. We use a matrix with small
size to ensure that the floor plan layouts can be amalgamated
thoroughly, rather than a larger one that only generates a
layout with all objects from the reference floor plans over-
lapped in a room. Besides, though the database floor plans
have different sizes, we only use few floor plans with similar
room features (including room size) to generate the layout of
the given room. Thus it allows the masks of the database floor
plans to be resized to the same size. Even a same room can
have more than one plausible layout, and we thus also cluster
these layout matrices in each type of scenes into groups (via
MeanShift clustering) to reveal the layout similarity. In the
bottom of Figure 5, we cluster the layout of all bedrooms in
our floor plan database into two groups, and show some floor

plan examples in each group. Layout matrices in the same
group are easier to amalgamate due to their similarities.

5.2 Scene Type Determination

Since different types of scenes have different layout distribu-
tions and object relations, we need to first determine which
type of scene is more suitable for the input room. The input
room can be a single scene or a composite scene consisting of
multiple pieces. The output of this step is thus either a single
scene type or a combination of multiple types. It depends on
the size of input room and the quantity of the user-specified
objects to determine which scene type(s) should the input

room to be. Assume �̃� ⊂ 𝒪 is a set of user-specified object
categories and 𝜃𝑖𝑠 is the average room area of scene type 𝑠𝑖,
calculated by using the 2D database floor plans in the same
type. For an input room whose area is 𝜃𝑟, we are to explore
a set of scene types 𝒮 = {𝑠𝑖}, such that the sum of the area
of the explored scene types should be close to 𝜃𝑟, and the
explored scene types should be ready to accommodate all
specified objects. Thus we determine the scene type(s) as
follows:

argmin
𝒮

|𝜃𝑟 −
∑︀

𝑆 𝜃𝑖𝑠|
𝜃𝑟

,

𝑠.𝑡.max
𝑠𝑖∈𝒮

𝑃 (𝑜𝑗 |𝑠𝑖) > 0 and
∑︁
𝑠𝑖∈𝒮

𝑁(𝑜𝑗 , 𝑠𝑖) ≥ 𝑛𝑜𝑗 , ∀𝑜𝑗 ∈ �̃�,
(2)

where 𝑃 (𝑜𝑗 |𝑠𝑖) is the occurrence frequency of object category
𝑜𝑗 in scene type 𝑠𝑖, 𝑁(𝑜𝑗 , 𝑠𝑖) is the maximum number of
object 𝑜𝑗 in any scene of type 𝑠𝑖, 𝑛𝑜𝑗 is the user-specified
quantity of 𝑜𝑗 (𝑛𝑜𝑗 = 1 if it is not explicitly specified). To
solve an approximate solution of this equation, we first use all
scene types as 𝒮 and remove the scene type 𝑠𝑖 which has the
largest average area one by one, until the sum of the areas of
the remaining scene types is approximate to the given room.
When removing a scene type will lead the constraints to be
no longer satisfied, such a scene type will be preserved in 𝒮.

We leverage Equation (2) to suggest a proper combination
with one or multiple scene types for the given room (see
examples in (Figure 11)). If the input room can be pieced
together with multiple scenes (e.g., a large room divided into
a bedroom and a study room), we use the max𝑠𝑖∈𝒮 𝑃 (𝑜𝑗 |𝑠𝑖) to
specify each object category to the scene part whose type has
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the greatest existence probability for such an object category.
For example, given two scene types 𝑠1 and 𝑠2 being explored
for the object categories �̃�, if 𝑃 (𝑜|𝑠1) > 𝑃 (𝑜|𝑠2) for an object

category 𝑜 ∈ �̃�, then 𝑜 belongs to the scene type 𝑠1 when
synthesizing the scene (Section 5.3). Such large rooms are
then divided into sub-rooms, one for each single scene type,
by adding virtual boundaries in the room to make the sub-
rooms have the similar proportional relation to the average
areas of their scene types. Hence the scene synthesis task is
respectively tackled in each sub-room with a single scene type.
In this way, given different sizes of input rooms or different
quantities of specified objects, our system adaptively uses
the layout examples from one or multiple types of scenes and
suggests different categories of object to create 3D scenes, as
shown in Section 7.

5.3 Object Exploration and Arrangement

To make our system easy to use, users only need to specify
a small number of object categories. The quantity of the
object in each specified category is set to 1 by default, and
can be specified by the user. This gives a coarse description
of the user’s demands about the target scenes. We explore
more proper object categories using the activity-associated
object relation graphs. The key idea here is to ensure that the
explored objects have close relations among themselves and
to the specified ones, and all the explored objects can make
the input room to have a reasonable rate of occupancy similar
to some of the floor plan examples. Namely, if all potential
object categories are used for synthesis, the scene might be
too crowded. But by removing the weakly related object
categories, the sum of object areas of the remaining categories
decreases approaching to a desired rate of occupancy, which
can be calculated by the floor plan examples with their rooms
similar to the input one. Hence, we employ the following
object exploration algorithm to achieve this goal:

ALGORITHM 1: Object Exploration

Input: Specified object category set �̃�, object relation graph

𝐺𝑠 = (𝒪,𝑊𝑠), input room area 𝜃𝑟
Output: Explored object categories 𝒪𝑜𝑢𝑡

𝒪𝑜𝑢𝑡 = 𝒪;

𝐶𝑜𝑠𝑡 = 𝐶(𝒪, 𝜃𝑟,𝑊𝑠);

while |𝒪| > |�̃�| do
Remove object category 𝑜 ∈ 𝒪 and 𝑜 /∈ �̃� with the minimum
𝐸(𝑊𝑠, 𝑜) from 𝒪;
Remove object categories {𝑜𝑖} from 𝒪 which are isolated in
graph 𝐺𝑠 after 𝑜 is removed;

Update the edge weight 𝑊𝑠 after graph 𝐺𝑠 is changed;

𝑁𝑒𝑤𝐶𝑜𝑠𝑡 = 𝐶(𝒪, 𝜃𝑟,𝑊𝑠);

if 𝑁𝑒𝑤𝐶𝑜𝑠𝑡 < 𝐶𝑜𝑠𝑡 then
𝒪𝑜𝑢𝑡 = 𝒪;

𝐶𝑜𝑠𝑡 = 𝑁𝑒𝑤𝐶𝑜𝑠𝑡;

end

end

return 𝒪𝑜𝑢𝑡;

In this algorithm, 𝐸(𝑊𝑠, 𝑜𝑖) indicates the average weight
of an object category 𝑜𝑖 to its neighbors in the relation graph
of scene type 𝑠 used for removing the weakly related object
category from the graph in each iteration, and 𝐶(𝒪, 𝜃𝑟,𝑊𝑠) is
a cost function aiming at finding category group with proper
rate of capacity and close relation. Assume category 𝑜𝑖 has 𝐽
neighbors in the group, we only compare top-𝐾 (𝐾 = 10 in
our implementation) database floor plans who have the similar
room features as the given room. 𝐸(𝑊𝑠, 𝑜𝑖) and 𝐶(𝒪, 𝜃𝑟,𝑊𝑠)
are defined as follows:

𝐸(𝑊𝑠, 𝑜𝑖) =
1

𝐽

∑︁
𝑗∈{1,··· ,𝐽}

𝑊𝑠(𝑜𝑖, 𝑜𝑗),

𝐶(𝒪, 𝜃𝑟,𝑊𝑠) =
1

𝐾

∑︁
𝑘∈{1,··· ,𝐾}

⃒⃒⃒
𝑅(𝒪, 𝜃𝑟)− 𝑟𝑘𝑠 )

⃒⃒⃒
− 𝜔 ·

∑︁
𝒪

𝑊𝑠(𝑜𝑖, 𝑜𝑗),

(3)

where {𝑜𝑗} is the set of neighbors of 𝑜𝑖 in the object relation

graph, 𝑅(𝒪, 𝜃𝑟) =
∑︀

𝜃𝑐
𝜃𝑟

is the ratio of capacity of the input

room and 𝑟𝑘𝑠 is the ratio of capacity of the 𝑘-th database
floor plan which has a similar room feature as the input room
by calculating their Euclidean distance with the uniform
weighting for individual components, and we set the weight
𝜔 = 0.02. Note that 𝜃𝑐 is the average area of the determined
object categories, and if the user specifies multiple objects in
the same category as input, we sum up all their projection
areas for 𝜃𝑐 when calculating the ratio of occupancy 𝑅(𝒪, 𝜃𝑟).
In this manner, we obtain a group of object categories

that could be placed into the input room. As illustrated in
Figure 6, these object categories will be arranged by the
layouts extracted from the 2D floor database. We intend to
seek for the floor plans with the similar room features to the
input room and use their layout matrices to synthesize a new
layout. By using the average area for each category of the
suggested objects, we can calculate the room feature f𝑟 of
the input room. Then, top-𝐾 floor plans with the minimum
Euclidean distances of the room features to f𝑟 are explored
as the references. These floor plan references have the similar
rooms to the input one in terms of the room size, positions
of windows and doors, and the ratios of capacity. The layout
matrices of the floor plans in the same clustered group are
amalgamated in a weighted manner as follows:

𝑀 =
𝐷(f𝑟, f

�̃�
𝑟 )∑︀

�̃� 𝐷(f𝑟, f
�̃�
𝑟 )

𝑀�̃�, (4)

where 𝐷(f𝑟, f
�̃�
𝑟 ) is the feature distance between f𝑟 and the

feature of its 𝑘-th floor plan with the similar room whose
layout matrix is 𝑀�̃�. Note that {𝑘} ⊂ {1, · · · ,𝐾} is a set
of floor plans whose members belong to the same clustered
group in the top-𝐾 similar database examples. We use the set
with most members if the top-𝐾 floor plans are clustered into
different group to get the layout matrix 𝑀 , and then resize
it to the same size as the input room, as the layout mask for
object arrangement. In this mask, the regions with the large
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Fig. 7. Two synthesized scenes and some of their associated references.
Our system explores objects (green) and creates layouts influenced by
the reference floor plans. Note the two rooms have different configu-
rations but are given the same category of object (blue).

values are more likely to be placed with furniture. Note that
the reference floor plans influence both the object exploration
and arrangement stages, to create scenes adapted to the given
rooms. For an example in Figure 7, two rooms with different
configurations (left) are suggested to have different floor plan
references (right). The references in the top case only have
the basic components of living room, while the configurations
of the bottom ones provide the extra space to allow more
objects. These differences actually lead to variations of the
synthesized results, more specifically, in terms of different
quantities of objects that a room can accommodate, and dif-
ferent layouts to arrange these objects. Since both the object
exploration (Algorithm 1) and layout creation (Equation 4)
rely on the floor plan references, the different reference floor
plans thus lead to the different synthesized scenes. Hence,
although the user specifies the same category of object (i.e.,
three couches), our system actually explores a gym equipment
for the bottom case and places the couch-TV group slightly
off centre compared to the top case.
Object arrangement. With the generated layout mask,

we place the explored object categories into the room in
turn. We choose the average length of the sides of the floor
projection bounding box for each object category to represent
a regular object in this category. Note we focus on the large
furniture as bed, wardrobe, desk, etc, while their accessory
objects like night table, TV, chair, etc, are placed after the
associated large furniture arranged, and follow a fixed relative
relations and directions as they are in the 2D database floor
plans. The quantities of the accessory objects also rely on the
associated large furniture and their sizes, e.g., large dinning
tables or conference tables always have multiple chairs. The
proportional relations of the quantities of the accessory objects
and the size of their associated large furniture are determined
by the examples in the 2D floor plan database. The sizes and
relative positions of some common furniture combinations
in the floor plans (e.g., three or four couches around a tea-
table), are also extracted as the priors for object arrangement.

Fig. 8. The user interface of our system with the display panel (in red
box), options panel (in blue box) and the suggestion list for object
replacement (in green box). The created scene can be displayed as
2D floor plan (Left) or 3D scene (Right).

Benefited from the generated layout mask, the large furniture
are placed in the mask with the positions and directions
covering the region with maximal value. The furniture are
placed one by one based on their sizes from the largest to the
smallest to ensure that small furniture will not be placed in
the region which is more suitable for the bigger ones. Each
time an object is placed, we cover this region in the layout
mask to 0 in this region to avoid object conflict. After all
explored object categories are placed, we make a suggestion
list of the associated 3D models in the database based on the
covering regions of their floor projections in the mask.

6 USER INTERFACE

As illustrated in Figure 8, the user interface of our system
provides two main panels: a display panel to assist the user
to set up an empty room, and show the 2D floor plan or
synthesized 3D scene; an options panel to specify object
categories as the input demands or for adding new objects.
Since our system is able to determine the scene type(s) of
the given room, which might be divided into sub-rooms with
different scene types, specifying object categories and their
quantities as the system inputs can make the scene types of
the given room be adaptive. For each object in the synthesized
scene, we also provide a list of suggested objects for potential
replacement to make scene variations (see the accompanying
video for a live demo).

Scene synthesis. With our interface, the user first speci-
fies a few object categories as constraints, and builds an empty
room by controlling the room size, the positions and sizes of
doors and windows. Afterwards, our system automatically
explores more object categories related to the specified ones
and creates a proper layout to place all the furniture into the
given room. Since the synthesized scenes of our system are
adaptive to the input room size and object categories, the
same room with different specified object categories or the
same specified objects in different sizes of rooms can lead
to different synthesized scenes (see experimental results in
Section 7).

Scene editing. Our system also allows the user to edit
existing scenes, e.g., by adding new categories of objects or
reusing existing layouts (Figure 9 (top)). Given a room with
already arranged objects, our system provides a list of object
categories for the user to choose new object categories to be
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Fig. 9. Top: adding a new object (in green) into an existing scene
(Left). Note the original layout has been adjusted following the gener-
ated layout mask (Right). Bottom: activity animation creation based
on our activity-associated object relation graph (right). The human
agents wander through three places to do different activities. This
animation is shown in the accompanying video.

added into the room. With the ratio of occupancy changed
due to the chosen objects, our system can re-generate new
layouts by Equation (4) to place these objects into the room.
Activity animation creation. Using our activity-associated

object relation graph to represent a scene with various furni-
ture can also indicate the potential activities that can occur in
the synthesized scene. Hence our system can generate activity
scripts to drive a human agent to wander around all these
objects according to the edge weights of the object pairs in
the graph. As illustrated in Figure 9 (bottom), starting from
any furniture which has the functional purpose for staying or
fetching something, animations are performed with its related
objects in the group for touching or watching, or getting
something from the objects. Then the agent wanders to the
next object which has the largest weight of the edge with the
previous object in the object relation graph. Thus, all the po-
tential activities about the existing objects can be performed,
resulting in an activity animation. See the accompanying
video for such animation.

7 RESULTS AND EVALUATION

In this section we first present various scene synthesis results
generated by our system, and show how the synthesized scenes
adapt to the inputs. Then we evaluate our system with a user
study where our results are compared to manually created
scenes in terms of both functional plausibility and visual nat-
uralness. We also compare our method to the closely related
works [Merrell et al. 2011; Savva et al. 2016] to demonstrate
the practicability of our system in layout creation and activity
representation.

Our 2D floor plan database consists of four types of home
scenes including living rooms (195), bedrooms (419), study
rooms (47), dining rooms (183), and another four types of
public scenes including offices (36), conference rooms (23),
gym (36), dining hall (115). These floor plans provide activity-
based object relations and plausible layouts for our adaptive
scene synthesis system. We also collect 18 categories of 3D

models including chairs (67), beds (87), couches (59), TV sets
(59), desks (58), night tables (56), dining tables (54), dresser-
s (53), tea tables (55), conference tables (51), pianos (40),
easels (13), bookshelves (57), refrigerators (12), wardrobes
(13), water dispensers (16), gym equipments (13) and play
equipments like billiard tables and play tables (22) to enrich
the variety of synthesized results. On average our system
needs less than one minute to interactively set up an empty
room with door(s) and window(s), and about 2 seconds to
automatically generate a 3D scene, tested on a PC with Intel
Core i7-4790 3.60GHz CPU with 16GB RAM.

Synthesis results. In Figure 10, we present 6 synthesized
scenes to show how the scene results adapt to different spec-
ified object categories. Each column has a pair of scenes
generated by the same empty rooms but differently category
constraints. In Figure 11, we show 4 large scenes which are
pieced together by multiple parts in different scene types. For
each synthesized scene, the input empty room comes with
doors, windows and some manually created ornaments like
plants, and a few specified object categories, while our system
adaptively explores more indoor objects and places them into
the room, making the synthesized scenes visually pleasing
and functionally plausible. In the top of Figure 12, we show
that the synthesized results are adaptive to the room size. For
each scene, a small room (Left) and a large one (Right) are
given with the same object category constraints. Compare
to the left example, the right case shows a large room that
encouraged by our system to be pieced by multiple parts, i.e.,
a study room left and a bedroom right. Figure 12 (bottom)
shows the adaptive scene synthesis by different quantities of
a certain specified object category: different quantities of the
specified gym equipments lead to a living room or a gym by
our system given the same room.

User study. One of the important characteristics of our
system is that the explored objects and layouts of the syn-
thesized scenes are appropriate for indoor activities. A key
evaluation of our system is thus to test whether the generated
scenes are functionally plausible in terms of the objects and
layouts. Like previous works [Fisher et al. 2015; Ma et al.
2016], we also leave such subjective judgments to human sub-
jects. To prepare the user study, we collected 5 floor plans of
different scene types (namely, bedroom, living room, office,
conference room and dining hall). These new floor plans were
again professionally designed but not included in our original
2D floor plan database (Section 4.1). We then used the room
size and partial existing object categories to create scenes with
our system. For further comparisons, we also invited 5 novice
users with no interior design knowledge and asked them to
manually select object categories, and place the objects into
each room with the same inputs as our system. We choose a
same object for each category in all those scenes to reduce
the influence of furniture style on the subjective judgments.
Afterwards, the floor plans of the scenes generated by 3

different ways (in total, 5 sets of 3 scenes; see one set of
scenes in Figure 13 (Top)) were blindly given to 20 profes-
sional participants engaged in interior design to evaluate the
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Fig. 10. Gallery of synthesized scenes given an empty room and one or multiple object categories.

Fig. 11. Large scenes generated with the given room divided into multiple sub-rooms. We show the generated layout mask in the bottom of each
case.

plausibility of both the layouts and the functionality. Each
participant was asked to give a score for each scene in the
discrete scale of 10 (best) to 0 (worst) based on the above
two criterions. The statistics on the evaluation results are

plotted in Figure 13 (Bottom). The scores of the novice users’
design are low, mainly because that even though the novice
users could choose proper objects for the scenes, the lack
of interior design knowledge led their designs to low-quality
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Fig. 12. Top: given the same specified object categories, the synthesized scene is adaptive to the size of the input room. Bottom: given the same
room, the synthesized scene is also adaptive to the quantity of a certain specified object category.

Fig. 13. Statistics of our user study. Top: the bedroom case with
“bed” and “bookshelf” categories specified in our user study test
data. Bottom: the average evaluation scores for the scenes created by
novice users, professionals, and our method in terms of the functional
plausibility and layout plausibility.

layouts. On the other hand, guided by the layouts in our 2D
floor plan database, our results achieved similar or sometimes
even better quality results compared to the scenes manually
designed by professionals.
Comparisons to closely related works. In Figure 14

we show the furniture layout results (Left) suggested by the
guidelines used [Merrell et al. 2011], and the synthesis results
by our system (with the same furniture (Middle) and with our
own suggested objects (Right)). In the two comparison cases,
although the objects are well arranged using the furniture

layout guidelines, some drawbacks might influence certain
activities in the scenes. For example, the position of the TV
set in the top-left case is in a backlight status with the TV
set facing the window, while this problem does not exist with
our results (Middle and Right), since the reference layouts
in our plan database have already implicitly considered anti-
backlighting. In the bottom-left case, a pre-placed TV set
plays a role as the emphasis to force the couches to face it,
while such a layout increases the distance of the way from
the door to sit on the couch (Left). Our work does not need
such a pre-placed emphasis as constraint. Benefited from the
layouts in the floor plan database, our system provides a better
solution with a shorter path and enabling anti-backlighting
for watching TV as well. Another significant advantage of our
approach is automatic suggestion for proper objects, which
have to be manually specified as input for [Merrell et al. 2011].

Our system also has the advantage over the current activity-
centric scene synthesis methods in activity representation. In
Figure 15, we compare the graphs of our system and the
state-of-the-art interaction representation method PiGraphs
[Savva et al. 2016], and visualize these graphs which represent
the activities in the same room (Left). We can see that our
activity-aware relation graph is a single graph connected all
objects of the scene, while PiGraphs provides two isolated
graphs representing certain groups of objects. It takes more
efforts to represent a scene by their graph which is based on a
posed single human, especially for scenes with objects where
human does not stay for a long time, e.g., bookshelf, wardrobe,
etc. For example, in this case, PiGraphs is able to represent
the activities of “sit-bed+wathcing-TV”, and “sit-chair+read-
book”. However, activities which involve dynamic processes
like first getting a book from the bookshelf and then going
to bed or chair to read the book can hardly be represented.
In contrast, our activity-associated object relation graph can
represent both the activities performed by a posed human,
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Fig. 14. Comparison with [Merrell et al. 2011] (Left). Our synthesis
results with the same input objects as their (Middle) and our suggested
objects (Right).

Fig. 15. For an indoor scene (Left), we show the descriptions of
[Savva et al. 2016] (Middle) and ours (Right), which could be used
for representing and guiding the synthesis of such a scene.

and the dynamic activities that need the human to walk from
one place to the other one, facilitating the animation creation
discussed in Section 6.

8 DISCUSSION, LIMITATION AND FUTURE WORK

We presented a novel technique for adaptive synthesis of
indoor scenes. Compared with the guideline-based or activity-
centric scene synthesis methods, our system is able to adap-
tively suggest the proper objects and their layouts to create
3D scenes, ensuring the functional plausibility of the scenes
especially for the dynamic activities. Benefited from the ob-
ject relation graphs and layouts extracted from a 2D floor
plan database, our system has several applications like indoor
scene synthesis, editing and even activity animation creation.
We have validated the usability of our system via various
scene creation results, subjective user study and comparisons
to closely related works.
Discussions. Our current system uses the user-specified

object categories as the constraints for scene creation. Some
higher level prescription such as activity tag can be used as
the alternative input. Since we have extracted the activity-
associated object relation graphs, we can label certain rela-
tions with semantic activity tags and provide them as the
options in the system UI. For example, if we label the rela-
tions of object pairs like bookshelf-bed, chair-desk, etc. with
a “reading” tag, we can then extract some sub-graphs from
the relation graph with certain objects associated with the
reading activity. In these sub-graphs, some objects like book-
shelf are necessary, while the others like desk or bed are
optional. Once the user chooses the reading tag as input, it
is equivalent to choosing the bookshelf as the user-specified
object category, and our system can still explore the other

Fig. 16. Top:Two scenes with different layouts might lead to different
subjective feelings when using desk or bed for reading. Bottom: the
placing order based on the size of each object leads a piano to occupy
the place which is more proper for the desk (Left), a slight user
assistance is required to change their orders to get a more plausible
result (Right).

associated objects adapted to the given room. Besides, the
object exploration stage in our system can also be employed
in the interactive scene synthesis frameworks (e.g., [Merrell
et al. 2011]): once the user chooses an object, our algorithm
automatically explores the related ones to accelerate the mod-
eling process. Moreover, considering the color style of room
and object might improve the quality and efficiency of scene
creation. For example, using the color style metric from the
existing works like Magic Decorator [Chen et al. 2015b] can
enable our system to explore objects with consistent color
styles from 3D database, thus constraining the object colors
in the synthesized scene to the same color theme of the given
room.

Limitations. Although our system often produces quality
results given empty rooms and certain object demands, it still
has several technical limitations. Since our system focuses
on furniture-level object arrangement, the positions of some
small objects like dishes and cups are not considered. In our
3D furniture database, such objects are attached to furniture
objects like dining tables and tea tables with fixed position-
s. Hence our system can provide the initial scene input to
existing methods focusing on the arrangement of such small
objects (e.g., Scene Evolution [Ma et al. 2016]) to obtain
more interesting variations closer to the natural indoor scenes.
Besides, since our object exploration component relies on the
ratios of occupancy of the database floor plans, a large input
room will be suggested to have many explored indoor objects.
If the user prefers a more empty room with fewer objects
or does not like some of the explored objects, a slight user
assistance is required to remove undesired object categories.
Moreover, If a user specified too many object categories given
a small room, our system will hold all the specified objects
and lead the synthesized scenes to be too crowded.
Another limitation exists in the layout generation stage.

When a large room is suggested to be divided into multiple
sub-rooms with different scene types, their relative positions
are not determined. In our current system, we always make
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the largest room type in the middle of the room or nearest
to the window. However, different ways to divide the room
can certainly lead to different effects on human activities.
For an example in Figure 16 (Top), a room has been divided
into a study room and a bedroom with two different relative
positions, and these rooms are respectively synthesized and
pieced together to generate the whole scenes. The left result
has a better lighting environment for the bed, which is closer
to the window than the desk, to make the “reading” activity
more appropriate to occur in the bed, while the right one
is on the contrary. Since the impact of the environment on
activities is very subjective, we need users to choose their
favorite result when such scenarios happen. Besides, since the
layouts of the sub-rooms are respectively created, when piecing
them together to generate a whole scene, some objects (e.g., a
bookshelf or wardrobe) might be placed in the border between
two sub-rooms. Since some of them should better be in the
places against the wall, these objects will be snapped against
to the wall on the other side of the sub-room. Moreover,
the placing order (from large to small) might not always
be appropriate. In some cases, user assistance is required
to change the placing order for a better result (Figure 16
(Bottom)). Lastly, our system has mainly focused on the
rectangular rooms since the non-rectangular floor plans are
less common and might not be suitable for layout transfer.
However, our system allows users to set up some independent
rectangular rooms and combine them to form a T- or L-type
scene.
Future work. In the future, we plan to further consider

living habits of human users to enable our system to produce
more personalized generations. More kinds of data like videos
of indoor human activities would also be further considered
to achieve more information to enhance the ability of system
to create more activity-associated 3D scenes. A final interest-
ing direction to extend our system is to employ the natural
language processing techniques to create accurate 3D scenes
with text descriptions.
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