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Constructive Solid Geometry (CSG) is one of the popular techniques that is widely applied 
in 3D modeling. It combines primitive solids using Boolean operations. However, the 
trade-off between efficiency and robustness of Boolean evaluation is difficult to balance. 
Previous methods sacrifice either efficiency or robustness to achieve advantages in one 
perspective. Recent works attempt to achieve excellent performance in both aspects 
through replacing the conventional vertex-based representations (V-reps) with plane-
based representations (P-reps) of polyhedrons. Different from V-reps, the P-reps use plane 
coefficients as meta-data and can lead to benign robustness. However, methods using P-
reps have disadvantages in efficiency compared to methods using V-reps. In this paper, we 
proposed a Boolean evaluation approach that absorbs both the efficiency of V-reps based 
methods and robustness of P-reps based methods. We design a Boolean evaluation method 
combining P-reps with V-reps. The P-reps information is utilized for exact predicate 
computation while information in V-reps is collected for fast topology query and coarse 
tests. Our proposed approach is variadic: it evaluates a Boolean expression regarding multi-
input meshes as a whole rather than a tree of decomposed binary operations. We conduct 
massive experiments and compare our results with those generated by the state-of-the-art 
methods. Experimental results show that our approach is robust for solid inputs and has 
advantages in performance compared to some previous non-robust methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Constructive Solid Geometry (CSG) is a popular modeling technique for Computer-Aided Design (CAD) and Computer-
Aided Manufacturing (CAM). Through using regularized Boolean operations (union, intersection and difference) (Requicha, 
1977; Tilove and Requicha, 1980), complex models can be easily constructed with combined primitives. There are mainly 
two categories of Boolean evaluation methods which are different in processing the intersections between primitives. One 
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Fig. 1. An overview of our Boolean evaluation framework based on hydrid representations. Vertex-based computation is included to maintained high 
efficiency and plane-based computation is conducted to ensure exact geometry predicates. Our approach mainly contains three stages: intersection compu-
tation, face tessellation and face classification.

category is the approximate method (Pavić et al., 2010; Biermann et al., 2001; Wang, 2011). These methods approximately 
fit the vertexes after discretizing the intersection areas, then rearrange the topology. The other category is the exact method
(Douze et al., 2015; Ogáyar-Anguita et al., 2015; Zhou et al., 2016). These methods are characterized by preservation of 
the vertex positions and maximum maintenance of multiple input elements (such as faces, vertexes, and topology). Many 
applications apply exact methods instead of approximate methods to pursue better accuracy. In addition, exact methods 
provide an accurate mapping between the input surfaces and the output meshes. This map benefits the transfer of surface 
information such as face colors and materials. We focus on the stream of exact methods in this paper.

There exists a trade-off between robustness and efficiency when designing Boolean algorithms. The robustness of the 
methods is usually guaranteed by exact arithmetic (Barki et al., 2015; Zhou et al., 2016), which is significantly slower 
than methods using normal floating-point arithmetic. Some methods apply other techniques such as epsilon-tweaking 
(Laidlaw et al., 1986; Segal, 1990; Feito et al., 2013) and numerical perturbation (Douze et al., 2015) but can only 
achieve quasi-robustness (Shewchuk, 1999). One important feature of these quasi-robust methods is the polyhedron rep-
resentations based on vertexes (V-reps). However, V-reps is not the only choice. Sugihara and Iri (1989) proposed the 
plane-based representation (P-reps) for polyhedrons. The advantages of applying P-reps as primary geometric information 
is that the rudimentary modeling operations can be conducted robustly. Under P-reps, the evaluation of Boolean expres-
sions is free from constructing new primary geometry information. In other words, no constructions are needed when 
applying P-reps and the computations are restricted to predicates only. Some researchers (Bernstein and Fussell, 2009;
Campen and Kobbelt, 2010) picked up the P-reps and coupled them with Binary Space Partitioning (BSP) structures to de-
velop an exact and robust Boolean operator. Although these plane-based methods are generally faster than those relying 
on exact arithmetic (Hachenberger and Kettner, 2005, 2006; Granados et al., 2003), plane-based methods are still limited 
by the high computational complexity of the BSP algorithms. Additionally, to make the boundary representations of poly-
hedrons compatible with the BSP structure, extra steps of conversion and connectivity reconstruction are inevitable and 
further deteriorates the runtime performance.

To properly handle the trade-off between efficiency and robustness, we develop a robust approach for Boolean evaluation, 
which has sound robustness with consistent solid inputs without sacrificing efficiency. To achieve excellent performance 
both in robustness and efficiency, we design a hybrid representation of solids combining P-reps with V-reps as shown in 
Fig. 1. It absorbs the advantages of high efficiency of methods based on V-reps and strong robustness of methods using 
P-reps simultaneously. In our approach, we take advantages of the V-reps information for coarse intersection and efficient 
neighboring face queries in the face classification process. The P-reps information is used for exact geometry computations. 
Our approach successfully increases the efficiency by avoiding constructions with exact arithmetic.

The architecture of our approach is more similar to vertex-based methods (Feito et al., 2013; Zhou et al., 2016) than BSP-
based methods (Bernstein and Fussell, 2009; Campen and Kobbelt, 2010). Note that our approach is a systematic solution of 
robust Boolean evaluations rather than a simple improved version of the robust vertex-based method. Our approach mainly 
contains three stages: intersection detection, face tessellation and face classification. In the first stage, triangle intersections 
are encoded into sets of planes, which are used for determining exact tessellations (see Fig. 1 (b1) & (b2)). Subsequently, 
faces in the tessellated meshes are classified using small local BSP trees, which are also compatible to the P-reps for en-
suring exactness (Fig. 1 (d1) & (d2)). Besides the feature of high efficiency and robustness, our method is also variadic
(Zhou et al., 2016), which means our approach is able to evaluate the whole input meshes without decomposition. These 
features save a large amount of evaluation time by avoiding repetitive computation. In sum, our approach has the following 
contributions:

• Plane-based intersection test: We develop a triangle–triangle intersection test suitable for geometric objects in plane-
based representation.

• Deferred tessellation using Tess-Graph: The tessellations of faces are conducted after all the intersections are detected 
and refined. To avoid errors caused by extra conversion, we develop a Tess-Graph to extract subfaces.
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• Accelerated face classification: In the final stage of determining whether a face belongs to the result meshes, we take 
advantages of label consistency to accelerate the classifying process. In addiction, evaluation results are cached for 
simplifying Boolean expression.

The rest of this paper is arranged as follows: Section 2 reviews literature of methods on Boolean evaluation; Section 3
provides background of Boolean evaluation based on V-reps and P-reps. We address the key problems on combining two 
representation in our approach; Section 4 provides an overview on our approach; Section 5, 6 & 7 provide technical details 
on the three stages of our approach respectively; Section 8 provides the experimental and comparison results; Section 9
summarizes the paper.

2. Related work

Boolean methods have been widely applied since their proposal (Laidlaw et al., 1986; Requicha and Voelcker, 1985;
Lin et al., 2016). When applying Boolean operations on 3D solid models, robustness and efficiency is always concerned. 
Different techniques are applied to balance the performance and robustness.

V-reps based methods and exact arithmetic: Using V-reps as the numerical and geometrical substrates is a common practice 
for many tasks in computer graphics including boolean methods. Previous methods based on V-reps (Ogáyar-Anguita et al., 
2015; Douze et al., 2015; Feito et al., 2013; Updegrove et al., 2016) often try to pursue robustness by using exact arithmetic 
which provides the most promising solution to the numerical robustness problem. Fortune et al. (Fortune and Van Wyk, 
1993; Fortune, 1995) handle Boolean operations on solids bounded by piecewise linear surfaces. Their methods are opti-
mized and integrated into CGAL (Hachenberger and Kettner, 2005; Granados et al., 2003). Keyser et al. (1999a, 1999b, 2004)
develop a system called ESOLID for boundary evaluation with exact arithmetic in the curved domain. Some other approaches 
apply the interval computation technique. Hu et al. (1996a, 1996b) adopt rounded interval arithmetic for computing Boolean 
operations on solids which contains spline surfaces. Fang et al. (1993) and Segal (1990) apply intervals (which they named 
as tolerances) to maintain the algorithm’s decision records. To pursue robustness with exact arithmetic, it seems inevitable 
to introduce extra computation and memory. Thus, these methods may be impractical when they are applied to arbitrary 
solids with many triangles. The state-of-the-art method (Zhou et al., 2016) attempts to fix a large range of topological 
deficiencies and achieve solid outputs through self-intersecting tests and vertex-rounding iterations. It has excellent per-
formance in robustness and sound execution speed. But when compared to the QuickCSG (Douze et al., 2015), it still has 
disadvantages in efficiency. In fact, Douze et al., the authors of QuickCSG (Douze et al., 2015), pursue extreme efficiency at 
the cost of robustness. They restrict the input to embedded polyhedron which satisfies general position assumption. They 
also assume that coplanar does not exist. However, this assumption is often violated in CAD modeling. It is worth to note 
that their method is variadic. In other words, their evaluation of Boolean expressions treats the input meshes as an entirety.

P-reps based methods and BSP techniques: V-reps is not the only choice for representing polyhedrons in graphical systems. 
Sugihara and Iri (1989) first introduced the concept of Plane-based representations (P-reps) of polyhedrons in 1989. They 
develop the P-reps in order to avoid topological inconsistency originating from the numerical errors. Their method is based 
on the knowledge that when the original geometric data are represented by a finite number of bits, the relative topological 
configuration of two or more geometric objects can be computed accurately in finite precision. All the geometric objects 
in P-reps are represented by the coefficients of the surface equations. The relative topological relation between geometric 
objects can be converted to a four-plane problem, which can be solved precisely by finite-precision computation. Fortune
(1997) noticed the advantages of P-reps and combined it with symbolic perturbation techniques at the cost of inflated 
algorithmic complexity.

Besides V-reps and P-reps, the Binary Space Partitioning (BSP) structures are also able to represent polyhedral objects. 
The BSP tree is a binary tree representing a space which is subdivided into convex sets by hyperplanes. It is originally 
applied to organize an arbitrary set of polygons to obtain a fast solution for the visible surface problem. Naylor, Amanatides 
and Thibault (Thibault and Naylor, 1987; Thibault, 1987; Naylor et al., 1990) discovered that BSP trees can provide exact 
representations of an arbitrary polyhedron in any dimension. In addition, they provide a method of converting the boundary 
representation of polyhedron to a BSP tree. Thus, evaluating a Boolean expression in the form of BSP tree become possible.

Bernstein and Fussell (2009) take advantages of both P-reps and BSP trees and develop a Boolean evaluation method 
which is unconditionally robust with consistent inputs. Different from vertex-based methods, the robustness of their method 
does not depend on exact arithmetic. Its time complexity is O (mn) where m and n are the sizes of the BSP trees. Campen 
and Kobbelt (2010) made improvement through localizing BSP operation with an octree. In their method, mesh refine-
ment is only conducted in the neighbor of intersections. Thus, it requires two extra operations: an extra separation of the 
intersection and the non-intersection region, and a reconstruction of topology.

Methods using approximate arithmetic: Since methods based on exact arithmetic may be impractical and have difficulties 
in processing degenerated surface–surface intersection, some researches try to compute approximate Boolean operations 
instead of exact ones. Most of these methods have excellent performance in execution. Biermann et al. (2001) design a 
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method for computing approximate results of Boolean operations on free-form solids bounded by multi-resolution subdi-
vision surfaces. Smith and Dodgson (2007) design a topologically robust algorithm which can guarantee the connectivity 
of the output as long as the input representation has valid connectivity. Varadhan et al. (2004) accelerated their meth-
ods through reducing the complexity of output meshes. Wang (2011) reduced redundant tessellation by preserving the 
non-intersected areas of the input meshes. Zhao et al. (2011) adopt a compact representation of axis-aligned surfels using 
Layered Depth Images (LDI) as a bridge and performing Boolean operations on the structured points. With the develop-
ment of General-Purpose computing on Graphics Processing Units (GPGPU), some researchers (Hable and Rossignac, 2005;
Ogayar et al., 2006) explore the computational power of the graphic cards to accelerate the Boolean evaluations.

3. Preliminary

Our proposed approach is based on comprehensive investigation and analysis of previous methods. A closer look at the 
causes of non-robustness of previous methods helps to understand the architecture of our approach. In this section, we 
will give a brief introduction of Boolean evaluations and locate the origin that influence robustness. Also, the basics of 
plane-based representation is presented and some of the definitions will be recalled. Then we analyze the key problems 
that making the P-reps coexists with V-reps.

3.1. Boolean evaluation

Requicha (1980) formalized the approach of modeling with n input solids through combining pairwise operations in 
arbitrary boolean expressions as Constructive Solid Geometry (CSG). A boolean expression of CSG can also be represented as 
a binary tree where leaves represent primitives and the nodes stand for operation. Since solid objects are usually represented 
by segmenting its boundary into a finite number of bounded subfaces (usually called Boundary representations of solids), 
the boolean expression is actually determining whether the subfaces of a primitive belongs to the meshes of final result or 
not. Let s be a certain face. Its relationship with the final mesh is determined by the Boolean expression f :

f (�(s)) = f (λ1(s), λ2(s), · · · , λn(s)), (1)

where λi(s) is the space label with respect to primitive Mi . Each label has four conditions: completely inside (in), completely 
outside (out), on the boundary with consistent normal vector (same) or with opposite normal vector (oppo). To compute 
f (�(s)), the labels with respect to all of the primitives (represented as �(s)) are required. It has been proved in Douze 
et al. (2015), Feito et al. (2013) that s is on the surface of the final mesh if and only if f (�(s)) = same. Unfortunately, 
not all the input faces can be classified correctly. Faces near the intersections of primitives are partially attributed to the 
final mesh. Thus, an extra step of detecting meshes interactions is required before face classification. Input meshes are then 
tessellated to ensure that every face is classified into one of four conditions (in, out, same, oppo).

Most of the existing Boolean methods adapt the two-step scheme: intersection computation and face classification. There 
are three sources that numerical errors may easily be included and cause failure in robustness of these Boolean methods:

• Inaccurate computation of the intersection between faces.
• Inconsistent topology produced in face tessellation.
• Inconsistent computed results of the space label and the location of faces.

To achieve robust Boolean evaluations, operations and computations need to avoid numerical errors in the above three 
sources. Our approach attempt to prevent numerical errors through applying plane-based representation in the numeric 
substrates in these three sources.

3.2. Plane-based representation

Plane-based geometry is suggested to be suitable for conducting computation with fixed precision efficiently. We employ 
plane-based representation to tackle the numerical errors from the three sources we previously mentioned. The plane-based 
representation takes effect both in metric data but also topological data. In the conventional solid modeling systems, the 
metric data are usually represented with coordinates with vertexes. To apply P-reps in our approach, metric data are rep-
resented by the coefficients of face equations. Let ax + by + cz + d = 0 be the equation of a plane p, where (a, b, c, d) are 
coefficients in float point numbers. These coefficients are fundamental metric data in our approach. In terms of topological 
data, all the geometric objects can be represented by planes. A point v can be regarded as the intersection of three planes 
thus we can express the point v with a non-trivial plane triple v : (p0

v ∩ p1
v ∩ p2

v). Similarly, when a line is regarded as the 
intersection of two planes, it is able to be represented as: l : (p0

l ∩ p1
l ). Let the normal of a plane p be denoted as n(p), then 

the positive direction of the line l is defined by n(p0
l ) × n(p1

l ). In P-reps, a polygonal face can be represented using a sup-
porting plane and several bounding planes. When trying to express a polygonal face s which has n edge, a supporting plane 
ps,sp on which the face lies, and a set bounding planes {pi

s,b | i = 0, 1, ..., n − 1} are used. Each edge line ei
s is represented 

by the intersection ps,sp ∩ pi . Vertex v i
s is represented by the intersection of ps,sp and two consecutive bounding planes. 
s,b
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Fig. 2. Plane-based representation of a triangle. A triangle can be represented as an intersection of four planes: one supporting plane and three bounding 
planes.

The normal of a plane p is denoted as n(p). Specially, when trying to applying P-reps on a triangular face, four planes are 
needed as it is shown in Fig. 2.

We compare difference in representing a vertex with P-reps and V-reps. A vertex is represented by four planes which 
means with 4 × 3 = 12 parameters under P-reps while it takes only 3 parameters under V-reps. Thus, it easily seems that 
computation under P-reps can be expensive. It suggests that at least three times computational burden compared to the 
methods used with V-reps. This is the reason for methods based on pure P-reps do not have advantages in efficiency. 
Previous researches try to speed up with numerical filters (Sugihara and Iri, 1989; Banerjee and Rossignac, 1996), but 
the executive speed of pure plane-based methods still has distance from satisfaction. The problem of computational cost 
deteriorates when P-reps meet the BSP technique. BSP techniques are substantially based on planes and naturally compatible 
with P-reps in implementation. But the drawbacks of the BSP algorithms slower down the total speed of the P-reps based 
Boolean methods. For one thing, the time complexity of BSP algorithms is high. For another, BSP structure destroys geometry 
connectivity. It requires extra operations to reconstruct topological connectivity.

3.3. Combining V-reps and P-reps

Based on the analysis above, we arrive at an idea that to achieve high efficiency and strong robustness simultaneously 
through combining the P-reps and V-reps. In our approach, V-reps are applied for coarse tests and fast connectivity queries 
and P-reps are used in exact predicates. Through the hybrid usage of these two representations, we hope to gain the benefits 
of efficiency by using V-reps and robustness by using P-reps.

However, the above win–win solution cannot be achieved through direct implementation. The difficulty lies in the di-
mension differences. The difficulty lies in two aspects. One is the conversion from V-reps to P-reps. To avoid introducing 
numerical errors as far as possible, we implement the exact conversion method by Campen and Kobbelt (2010). Their 
converting method is able to guarantee exact calculation of the plane coefficients with controlled precision. The preci-
sion can be set according to input vertex coordinate precisions. Their approach is able to handle full IEEE 754 single 
precision input. In our implementation, the plane coefficient is embedded into double-precision floating point num-
bers. Since modern hardwares are optimized for adaptive exact predicates for floating point numbers (Shewchuk, 1997;
Priest, 1991), the calculation can be conducted efficiently with determinant sign predicates (Shewchuk, 1997). One of the 
fundamental predicates is the relative position between a point and a plane. Suppose we have a point v , which is the 
intersection of the three planes p, q and r. Thus, the plane representation of v is p ∩ q ∩ r. Let s be a plane which we are 
going to justify its relative relationship with the point v . Let the plane equation be

f (xi) = ai x + bi y + ci z + di, where i ∈ {p,q, r, s} (2)

Then, we calculate the following determinant:

� =
∣
∣
∣
∣
∣
∣

ap bp cp

aq bq cq

ar br cr

∣
∣
∣
∣
∣
∣

∗

∣
∣
∣
∣
∣
∣
∣
∣

ap bp cp dp

aq bq cq dq

ar br cr dr

as bs cs ds

∣
∣
∣
∣
∣
∣
∣
∣

(3)

With the sign of �, we are able to obtain the relative position between the point v and the plane s. If � > 0, point v is 
on the positive direction of the plane s, which mean the point is on the same side of the plane normal. The computation 
above is conducted with static filter technique (Shewchuk, 1997) to achieve exactness.

Another difficulty lies in the dimension differences. Most of the V-reps based algorithms perform in low dimensions 
which makes it difficult to be implemented under P-reps. For instance, one common operation in V-reps based 2D triangu-
lation and face classification is to project vertex coordinates onto 2-Dimensional planes or 1-Dimensional lines. To conduct 
similar operation under P-reps is difficult because the vertex coordinates are not included in P-reps. To solve the dimen-
sional incompatibility, our solutions is to format the operations in low dimensions into high dimensions. The following are 
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Fig. 3. Geometric configuration of linear ordering of points in 3D under P-reps. Points va and vb are both on line lab . We convert this problem into the 
plane ordering of pa and pb along lab .

Fig. 4. Illustration of Theorem 1. As it is shown, the angle between n‖(pa) and n‖(pb) is exactly θab .

three typical problems in 2D and we converted it into problems in 3D which can be solved within P-reps. The computation 
between objects in P-reps can be accomplished with predicates only.

Point-line orientation: The point-line orientation describes the relative position between a point and a line. In a 2D sit-
uation with V-reps, the point-line orientation is determined through computation using the line parameters and point 
coordinates. When computing point-line orientation in 3D with P-reps, we converted it to the problem of defining the rela-
tive position between a point and a plane which contains the line. Given a line l : (p0

l ∩ p1
l ) and a point v within plane p0

l , 
we determine the point-line orientation though the relative position between v and p1

l . When v lies within p1
l , point v is 

obviously on line l. Similarly, when point v lies in the positive direction of p1
l , it is on the right sides of l.

Linear ordering of points: The linear order of points along one line can be decomposed into the problem of binary com-
parison (see Fig. 3). Given a line l with two points on it, va : (p0

a ∩ p1
a ∩ p2

a), and vb : (p0
b ∩ p1

b ∩ p2
b), we need to determine 

their relative order along l. To solve this problem, we choose one plane (pa and pb in Fig. 3 right) that is not parallel with 
l from the P-rep of each point, then convert this problem into a problem of determining the linear order of planes. The 
converted problem can be solved by the method of Banerjee and Rossignac (1996). The chosen planes should have the same 
orientation with respect to l (positive dot product between the plane normal and the normal of l), and unqualified planes 
need to be flipped.

Circular ordering of lines: During face tessellation, the neighborhoods of intersections are required. In other words, it 
requires circular ordering of directed lines around a vertex (see Fig. 5). We sort the lines in a divide-and-conquer way 
based on the relative order of each pair of lines. In this way, the problem is converted to computing the circular order of 
two lines la and lb in a plane p0. The order is determined by the sign of sin θab , where θab ∈ (−π, π) is the angle from 
la to lb in the top-view of p0. The sign of sin θab is the same as the sign of n(p0) · (la × lb). However, directly computing 
this equation requires extra precision to explicitly compute la and lb . To avoid extra computation, we found an efficient 
solution with Theorem 1. Theorem 1 enables us to obtain the sign of sin θab through calculation on plane normals. Since the 
plane normals are three dimensional vectors, the calculation of Equation (7) is equivalent to computing a 3 × 3 determinant, 
whose elements are all floating-point numbers.

Theorem 1. Given two directed lines la : (p0 ∩ pa) and lb : (p0 ∩ pb) within plane p0 , the following relation always stands:

sign(sin θab) = sign(n(p0) · (n(pa) × n(pb))) (4)

Proof. First, n(pa) and n(pb) are orthogonally decomposed along n(p0):

n(pa) = n‖(pa) + n⊥(pa)

n(p ) = n‖(p ) + n⊥(p ),
(5)
b b b
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Fig. 5. Geometric configuration of circular ordering of lines in 3D under P-reps. la : (p0 ∩ pa) and lb : (p0 ∩ pb) are within plane p0.

where the superscript ‖ refers to the component parallel with p0 and ⊥ means the component orthogonal to p0. Since 
n(p0) is orthogonal to p0, we get:

n(p0) · (n(pa) × n(pb)) = n(p0) · (n‖(pa) × n‖(pb)). (6)

On the other hand, the angle between n‖(pa) and n‖(pb) is exactly θab (see Fig. 4). Therefore,

sign(sin θab) = sign(n(p0) · (n‖(pa) × n‖(pb))). (7)

By (6) and (7), the theorem is proved. �
4. Overview: Boolean evaluation based on hybrid representation

Our approach contains three stages: intersection computation, deferred tessellation and face classification. There are 
similarities between our approach and some vertex-based Boolean method (Zhou et al., 2016; Feito et al., 2013). However, 
our approach is not a simple plane-based implementation of the vertex-based algorithms. Instead, our approach is equipped 
with specially design algorithms to tackle the numerical errors from different sources: triangle–triangle intersection tests, 
triangle tessellation, and polygon classification. We give a brief introduction of the three stages of our approach in the 
following paragraphs and more technical details are provided in the next three sections.

Intersection computation: At the beginning, we construct an octree on all the input meshes to make our method variadic 
and speedup the computation. In the first stage, our main task is detecting the intersections. The computation of the 
intersections between pairs of triangles is based on the Möller’s algorithm (Möller, 1997). To reduce the numerical errors 
caused by the vertex-based implementation of the Möller’s algorithm, all the intersections are represented using planes 
(Fig. 1(b2)). We only retained the vertex-based coarse test to preserve the fast early rejection (Fig. 1(b1)). Degenerated cases 
in intersection (such as coplanar) are carefully processed. In addition, octrees are applied to speed up our computation 
(Fig. 1(a)).

Deferred tessellation: After all the intersections between triangles are determined, the input meshes need to be subdivided 
to ensure all intersections occur on edges and vertexes (Fig. 1(c)). In our approach, an intersection refinement is introduced 
to resolve the overlapped regions between the intersections. The refinement is essential to support variadic Boolean evalua-
tion. Then we construct a structure graph called tess-graph to guide the exact tessellation of each face. The subdivided faces 
are polygons rather than triangles.

Face classification: In the final stage of approach, faces that satisfy the Boolean expression from the tessellated meshes 
are collected to generate the final mesh. In this stage, we utilize the connectivity information to propagate space labels 
in a flood-filling manner (Fig. 1(d1)). The seed face label is exactly computed by a local BSP constructed according to 
the neighborhood of the face (Fig. 1(d2)). In this stage, we focus on pursuing high efficiency and try to accelerate every 
computing steps.

5. Intersection computation

The initial stage of our approach is to detect intersections between faces with triangle–triangle intersection tests. One of 
the simple and efficient ways is to apply the Möller’s algorithm (Möller, 1997). However, the original Möller’s algorithm is 
vertex-based and can not be directly applied with plane-based geometry. In addition, it easily introduces numerical errors 
in float point arithmetics. Thus, we develop a plane-based intersection algorithm based on Möller’s algorithm.
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Fig. 6. Octree comparison.

Fig. 7. The geometry of planes in a Plane-Based Intersection representation (PBI-rep). In our approach, the intersecting lines are restored in PBI-rep. The red 
line segment (I) is the intersection represented by I . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

5.1. Space division

As intersection detection is performed between each pair of faces, space division is necessary to reduce the number of 
testing pairs. In our approach, the space division is conducted with an adaptive octree. The intersections between triangles 
and octree nodes are efficiently detected using the separating axis theorem (Gottschalk et al., 1996). The leaves of octree 
are classified into two categories. If all faces that intersect a leaf belong to the same mesh, the leaf is called a normal cell. 
Otherwise, it is regarded as a critical cell. The triangle–triangle intersection tests are performed in the critical cell only. We 
make a comparison between our octree and that of Ogayar et al. (2006). As it is shown in Fig. 6, the normal cells in our 
octree are not divided in our octree. Ogayar et al. (2006) divide all the normal cells in their octree for the purpose of the 
point-in-polyhedron test (Frisken and Perry, 2002), which has a limited enhancement in performance. Thus, we omit the 
division of the normal cell for saving computational time. This simplification for time saving is significantly especially when 
intersections between primitives are sparsely located in small regions.

5.2. Plane-based intersection test

Our intersection test is a plane-based algorithm based on the Möller’s algorithm. We adapt the original Möller’s algo-
rithm to plane-based geometry and develop the corresponding plane-based algorithm. In addition to making the algorithm 
theoretically correct, we also provide the implementation details.

5.2.1. Plane-based intersection representation
In our approach, an intersection line segment I is stored as {T , P ext, P 0, P 1, N }. We name it as the Plane-Based In-

tersection representation (PBI-rep, see Fig. 7). The first component, T , indicates which triangle I lies in. P ext indicates the 
plane that I lies on. T should not be in P ext . Thus, the first two components indicate that I lies on the line T ∩ P ext . Then, 
the two endpoints of I are T ∩ P ext ∩ P 0 and T ∩ P ext ∩ P 1. The last component, N , represents the intersection neighborhood
of I . It is defined as the neighboring faces of I , which are not from the primitive of T . N can be a single face or a set 
faces from one or more input primitives.

For example, two triangle faces, t1 and t2, originating from meshes Mi and M j respectively, intersect. Two intersections 
I12 on t1 and I21 on t2 are generated. For I12, T = t1 and P ext = pt2,sp . P 0 and P 1 are boundary planes of t2, which will 
be discussed later. The last component N = t2 in general. Sometimes, I12 may lie on the edge of t2 (see the four different 
conditions in Fig. 10). These are degenerate cases, called edge intersection. In this situation, the N is the set of all the faces 
from M j adjacent to that edge. Edge intersection will be discussed in section 5.3.
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Fig. 8. Plane-based intersection detection. Seg1 is the intersection between pt2,sp and t1. Seg2 is the intersection between pt1,sp and t2. The intersection 
between t1 and t2 (segment in red line) is the overlapped region of Seg1 with Seg2.

Fig. 9. We denote the signed distance from point vi to plane pt2,sp as di . The four conditions of intersection between t1 and pt2,sp are: a) d0 · d2 < 0, 
d1 · d2 < 0; b) d0 = 0, d1 = 0, d2 �= 0; c) d0 = 0, d1 · d2 < 0; d) d0 = 0, d1 · d2 > 0. Endpoints of Seg1 are the intersections between pt2,sp and the related 
edges of t1 (bold red lines).

5.2.2. Plane-based intersection detection
Before conducting intersection detection, we first convert each triangle to its P-reps. That is a supporting plane pt,sp

surrounded by three bounding planes {pi
t,b | i = 0, 1, 2}. Then we compute the intersections between two triangles t1 and t2

(shown in Fig. 8) with the following steps:

1. Testing whether t1 intersects pt2,sp , the supporting plane of t2. The same test is also carried out between t2 and pt1,sp . 
If the intersections do not exist, early rejection is returned.

2. Compute the intersection between t1 and pt2,sp , denoted as Seg1, and the intersection between t2 and pt1,sp , denoted 
as Seg2 respectively.

3. Determining whether t1 intersect t2 by computing the overlap between Seg1 and Seg2. The overlap is determined 
according to the linear orders of the endpoints in Seg1 and Seg2.

Different from the original Möller’s algorithm and previous methods, our plane-based intersection algorithm does not 
use the costly arbitrary precision arithmetic to produce exact coordinates. The exact computation is achieved with the 
usage of plane-based representation. In the first step, the computation of signed distances involves the vertex coordinates 
and the supporting planes of triangles only. Therefore, if the early rejections occur, the bounding planes are not needed at 
all. Additionally, the supporting plane is represented by four double-precision floating-point numbers with the conversion 
method of Campen and Kobbelt (2010). Let us denote precisions of the first three parameters and the last parameter to be 
La and Ld , respectively. There exists a relation Ld = La + L + 1, where L is the precision of the coordinates of input vertexes. 
This relation allows us to compute the signed distance exactly in double-precision. With these two facts, our early rejection 
is equally efficient as the rejection in original Möller’s algorithm.

If early rejection is not triggered and t1 and t2 are not coplanar, Seg1 and Seg2 are computed. In fact, what we need to 
obtain is the endpoints of Seg1 and Seg2 in P-reps. The endpoints are intersections between the supporting plane of one 
triangle and an edge of the other triangle. By computing the bounding planes, the endpoints can be implicitly represented 
by plane triples. For example, the endpoint of the red overlap segment in Fig. 8 (which is represented in an empty circle), 
can be expressed with pt2,sp ∩ pt1,sp ∩ pi

t1,b , where pi
t1,b is the bounding plane of the related edge. Fig. 9 shows all of the 

possible intersection conditions between t1 and pt2,sp . The coplanar situation will be discussed specifically in section 5.3. 
With the P-reps of the endpoints, whether Seg1 and Seg2 have overlap segment can be easily determined according to the 
linear ordering of endpoints.
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Fig. 10. There are four conditions of two triangles intersect on an edge. Triangle faces t1 and t∗
1 are companion faces. Similarly, t2 and t∗

2 are companion 
faces. a) t2 and t∗

2 are on different sides of t1. b) t2 and t∗
2 are on the same side of t1. c) t∗

2 is coplanar with t1. d) Both t1 and t2 have companion faces: 
the intersection is an edge intersection for both t1 and t2 (instead of only for t2 is the previous three conditions).

Fig. 11. a) Coplanar situation. t1 and t2 intersect in 2D, dividing each other into a convex overlapping area and an exclusive area. b) Possible configurations 
of the companion faces. ta is coplanar with t1, while tb and tc are on different sides of t1. The blue triangles originate from the same mesh. The yellow 
segment is not necessarily belonged to the final mesh, and may not be detected. The red segments can be detected during intersection tests between t1

and the companion triangles (tb and tc ).

5.3. Handling degenerate situations

Intersections between triangles are line segments in most circumstances. But they may possibly be points in a convex 
area. The intersections may also be on a primitive edge. The existence of degenerate situations seriously affects the ro-
bustness of our Boolean operations. We classify the degenerate cases into three categories and provide simple but effective 
methods to handle these cases.

Intersection at a point: If two triangles intersect at a single point (e.g., Fig. 9(d)), the intersection cannot be represented with 
our PBI-reps. To guarantee correct tessellation in this situation, the intersection point is added into the related triangles. In 
this simple way, we avoid introducing extra intersection line segment.

Intersection on an edge: When a triangle (as t1) intersects on the edge of another triangle (as t2), the generated intersection 
is more complicated. In the case that intersection appears on the edge of triangle, t2 has a neighboring face (as t∗

2) which 
intersects t1 on the same edge (see Fig. 10 for different cases). The intersection neighborhood is a set of all faces that share 
a common edge, rather than a single face. For example, in Fig. 10(a), the intersection neighbors of t1 are t2 and t∗

2. t2 and 
t∗

2 are also called the companion triangles. The intersection between t1 and t2 will be detected again during intersection 
detection between t1 and t∗

2. When cases of intersection on the edge appear, we only need to handle the duplication in 
tessellation.

Coplanar: Coplanar refers to the case that two triangle faces intersect within a common plane. As it is shown in Fig. 11(a), 
t1 and t2 divide each other into two areas: a convex overlapping area and an exclusive area. In our approach, we regard 
coplanar as an except case. Coplanar cases are processed as no intersections. This processing method is reasonable if cases 
of intersections on the edge can be properly handled. In this way, we get rid of the complex situations of 2D intersections 
without having any negative effects on the topological correctness. According to our observation, we notice that t1 is actually 
clipped by edges of t2 (see Fig. 11(a)). This suggests that the coplanar between two triangles can be regarded as special 
cases of intersection on the edge. But in coplanar cases, there can be three edge intersections at most (red and yellow 
line segments in Fig. 11(b)). Similar to the cases of intersection on the edge, the intersections in the coplanar cases will 
be detected multiple times in triangles that share common edges. In an extreme situation that all the companion triangles 
are coplanar, none of them will be detected in the intersection (the yellow segment in Fig. 11(b)). Fortunately, the case 
that all the faces of intersection neighborhood are all within the same plane is quite rare. If such an intersection enters 
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Fig. 12. a) Different colors indicate that the intersections originate from different meshes. The yellow and red intersections intersect at a point. The yellow 
intersection overlaps with the green intersection. b) After refinement, we introduce a new vertex va , and merge overlapping intersections into a single 
edge eb . c) Our tessellation method does not guarantee that all of the faces are triangular. d) If triangulation is performed, new edges (red line segments) 
are introduced and double-precision is not enough to hold the plane coefficients of their P-reps.

the surface of the final mesh, the surface in the intersection neighborhood is definitely a plane. Therefore, it is safe to 
omit these types of intersections because the intersection is not necessary to be an edge in the final model. Since the 
coplanar intersections are not specially processed, the overlapping areas (t1 ∩ t2 and t1 ∩ ta) may have different tessellations 
in different primitives. But our approach is free from the inconsistent topology in the final mesh. In fact, there is no need 
to worry about inconsistent topology because faces from a certain primitive in such coplanar areas are either collected or 
abandoned together. The coplanar areas that become the surface of the final mesh will inherit only one of the tessellations.

6. Deferred tessellation

Tessellation is performed on each intersecting triangle after intersection computation. It is conducted after all the inter-
sections are detected rather than clipping triangles incrementally at each step of intersection computing. In this stage, we 
first performs an intersection refinement to guarantee that intersections intersect each other only at endpoints. Then, we 
perform our minimal tessellation based on tess-graph, which is a graph-like description of the intersections on a given face.

Many methods use Constrained Delaunay Triangulation (CDT) to perform tessellation on triangles. In these methods, 
triangle faces are treated as the convex target zones and the triangulation is conducted using the intersections as constraints. 
However, those CDT algorithms (Chew, 1989; Preparata and Shamos, 1985) are performed in 2D. For 3D applications, the 
CDT algorithm needs to be mapped to three dimensions. Even after mapping, implementing a plane-based CDT requires the 
introduction of extra planes. Extra planes are included to ensure that each subface is a triangle (see Fig. 12(d)). In practice, 
we notice that even double-precision storage is not enough for storing the coefficients of these planes. Therefore, instead of 
applying CDT, we conduct a minimal tessellation on each triangle. With the minimal tessellation, subdivided faces become 
general polygons instead of triangles.

6.1. Intersection refinement

From the intersection test in the previous stage, we are equipped with the intersection information of the triangles. 
However, the intersecting lines may also intersect each other. As it is shown in Fig. 12(a), the new points can either be gen-
erated by crossing of intersecting lines (e.g., the cross point generated by the red and yellow lines) or the overlap between 
intersecting lines. The purpose of the refinement is to locate the points generated by the crossing of intersecting lines, and 
optimize the triangle–triangle intersections information before the final tessellation. We apply intersection refinement on 
each intersecting triangle. For a triangular face t , we collect all of the intersections in PBI-reps on t as a set �(t) = {I|T = t}. 
Note that the three edges of t are also included into the �(t) for they are also used in subface extraction. For the PBI-reps 
of the three edges of t , their intersection neighbor component N is set as N/A because they are not real intersections. The 
intersection refinement is conducted on the set �(t) using plane-based geometric predicates only and we denote the refined 
set as �′(t). The refinement mainly contains the following two steps: coincidence elimination and intersection resolving.

Coincidence elimination: If two intersecting lines have the same endpoints, they are coincident intersections. Because 
our intersection is recorded in PBI-rep, to determine whether two intersections I1 = {t, P 1

ext, P 1
0, P

1
1, N 1} and I2 =

{t, P 2
ext, P 2

0, P
2
1, N 2} are coincident, we need to compare their third and forth components. That is whether P 1

0 = P 2
0 and 

P 1
1 = P 2

1. Since intersections are non-directive, the order of endpoints does not affect the determination of coincidence. In 
other words, when P 1

0 = P 2
1 and P 1

0 = P 2
1, I1 and I2 are also coincident. Coincident intersections are merged together. 

Suppose I1 and I2 are coincident, we merged them into one intersection Imerged = I1 ∪ I2 = {T , P ext, P 0, P 1, N 1 ∪N 2}. 
Note that the first four components are directly inherited from I1 or I1 . The intersection neighborhood component N is 
a union of the neighbor information from I1 and I1 . It suggests that Imerged may contain faces from different primitives 
after this phase.
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Fig. 13. Conditions of intersections.

Intersection resolving: After eliminating coincident intersections in �(t), we need to detect whether the remained inter-
secting lines intersect in any location other than endpoints. We conduct intersection test between intersecting lines from 
different primitives. The intersection test is a series computation on point-line orientation in P-reps. Given two intersection 
I1 = {T , P 1

ext, P 1
0, P

1
1, N 1} and I2 = {T , P 2

ext, P 2
0, P

2
1, N 2}, we first compute the point-line orientation between the line I2

and the two endpoints of I1 . Then compute the point-line orientation between the line I1 and the two endpoints of I2 . 
Through the relative position of the four endpoints, we can easily determine whether I1 and I2 intersect or not. As it is 
shown in Fig. 13, there are three types of intersection that may occur between intersecting lines. In these situations, at 
least one of intersecting line is split and a new vertex is generated at the cross. The P-rep of the new generate vertex is 
P 1

ext ∩ P 2
ext ∩ t . In the situation of overlap, the PBI-rep of the overlapping segment can be easily constructed through absorb 

the new vertexes as the endpoint components and partially inherit other components from I1 and I2 . Note that the coin-
cidence elimination will be repeated again after intersection resolving. Because if two intersections are colinear, resolving 
their overlap can produce new coincident intersections.

6.2. Tessellation by tess-graph

To perform tessellation and extract subfaces, we develop a graph description of the tessellated face topology, called 
Tess-Graph. For each intersecting triangle face t , a tess-graph is constructed according to the intersections contained in the 
set �′(t). In a tess-graph, intersections are represented by the connections between nodes. The nodes of the tess-graph 
represent the endpoints of the intersections. The tess-graph can be easily constructed according to the PBI-rep in �′(t). 
Equipped with the tess-graph, subfaces can be easily extracted by constructing valid loops. A valid loop is a loop in the 
tess-graph which satisfies two criteria:

• the direction of the loop should be consistent with the face normal;
• consecutive connections on the loop should be adjacent by a circular order.

Each valid loop corresponds to an intersection-free face. After all of the valid loops are determined from the tess-graph, the 
corresponding face is tessellated into a series of subfaces (see Fig. 15). Noted that to facilitate face classification in the next 
stage, we restore the neighboring components N of the PBI-reps on the edges of each subfaces when constructing the valid 
loops.

6.3. Tess-graph with multiple components

The tess-graphs we generate are not necessarily a connected graph. If a tess-graph contains more than one connected 
component, we need to merge identical valid loops to generate polygons with the non-zero genus. To find identical loops, 
we construct an auxiliary connection Cext for each inner component, which connects a vertex vo on the outer component 
and a vertex v i on the current inner component (see Fig. 14(a)). After that, we search among the connections belonging to 
the current inner component that intersects Cext to find the one (as C1) which is the nearest to vo . Then another search 
is conducted among the connections not belonging to the current inner component that intersects Cext , and find the one 
(as C2) which is the nearest to C1. Finally, by locating the valid loops that C1 and C2 within, we find the identical pair of 
loops.

To guarantee that Cext has an exact P-rep in double-precision, an arbitrary vertex of the current triangle is chosen as 
the vo . On the other hand, v i must be the vertex generated by the intersection between a triangle and an edge (as e). All 
intersection points introduced by triangle–triangle intersections are of this type. In this way, we obtain three vertexes with 
exact coordinates (vo and the two endpoints of e). Therefore, we can construct the plane on which Cext lies by the same 
method of generating supporting planes of triangle faces (see Fig. 14(b)).

7. Face classification

In this stage, the space label vector �(s) of the faces are computed and faces are determined whether it can become 
a part of the final mesh according to the evaluation results λ f (s). All the faces are classified by evaluating their space 
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Fig. 14. a) We construct an auxiliary connection to connect each inner component with outer component (the red line segment). By checking the intersec-
tions on the auxiliary connection, we find that the orange loops are identical. b) We construct the P-rep of the auxiliary connection by vo and the exact 
coordinates of the endpoints of the edge e.

Fig. 15. a) To tessellate a triangle, all the valid loops on its corresponding tess-graph should be found. The direction of the loops must be coherent with 
the triangle normal (assuming here that the normal points to the outside of the paper). b) Each circular adjacent edge pair is an angle of the tessellated 
polygon.

label vectors �(s) with the boolean expression f (Equation (1)). Adjacent faces likely share the same space label vectors. 
Our classification method takes advantages of the spatial coherence of the label vectors and propagates the classification 
results between neighboring faces. The main challenge in the propagation is to efficiently determine whether two adjacent 
faces do share the same label and how to calculate the label vectors. For arbitrary adjacent faces s1 and s2, the space label 
vectors �(s1) and �(s2) differ if their shared edge e12 lies on the surface of any other primitive. Recall that the neighbor 
information of intersections (the N from PBI-rep) is retrieved in the edge of the subfaces the stage of deferred tessellation. 
Thus, some neighboring faces must be stored on e12. In addition, the neighbor information of intersections can help us to 
locate the different components between the space label vectors �(s1) and �(s2), and thus allow us to quickly compute 
the new space label with BSP technique. The outline of our classification is shown in Algorithm 1.

Algorithm 1 Fast face classification.
Input: Tessellated primitives and Boolean expression f
Output: Classification f (�(si)) of each face si

1: Select a proper seed face s0;
2: Compute the seed label vector �(s0);
3: propagate( s0 , �(s0));
4:
5: function propagate( s , �(s))
6: Compute f (�(s));
7: for each neighboring face ss,i do
8: if si has been classified then
9: continue;

10: end if
11: if there are PBI-reps Ik on e(ss,i , s) then
12: compute �(ss,i) by �(s) and Ik ;
13: propagate( ss,i , �(ss,i));
14: else
15: propagate( ss,i , �(s));
16: end if
17: end for
18: end function

7.1. Label computation and propagation

Previous methods like Feito et al. (2013), Ogáyar-Anguita et al. (2015) evaluate the space label of a face through com-
puting the space label of the barycenter. This computation is based on the fact that the face can be treated as a whole, 
and all inner points of the face share one label vector. In the methods like Zhou et al. (2016), label computation is based 
on points inside the cell, and the face labels are determined according to the labels on the two sides of the face. However, 
all the methods above require introductions of new points which take rational numbers space to restore coordinates. If the 
accuracy of the stored coordinates decreases, round-off errors may occur. To avoid involving extra points, we utilize the 
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Fig. 16. Label propagation.

vertexes of a face to compute the space label. To conduct label computation based on vertexes, we need to solve two dis-
crepancies. One discrepancy is that the space label of a vertex is not always same to the space label of the face. The other 
discrepancy is that the space label of a face has two more values than the space label of a vertex. For the space label of a 
vertex v , λ(s) ∈ {in, out, on}. But for the space label of a face (s), λ(s) ∈ {in, out, same, oppo}. This discrepancy is attributed 
to the orientation of a face. The label same and oppo are in fact sub labels of the label on.

To deal with these discrepancies, we optimize the propagating path and the initial computation. We start from a seed 
vertex v0, which is one of the endpoints of an edge e0 of a face s0. We assume that the label vector �(v0) is known. Then 
we use �(v0) to compute �(e0), and then �(s0). As shown in Fig. 16, the trace of label propagation is:

v0 → e0 → s0 → s1 → s2 → ... . (8)

There are three basic paths in the propagation: ve → e, es → s and si → s j , where ve is the endpoint of e, es is the edge 
of s, and si is adjacent to s j . The operations are described in detail in the following paragraphs. Before providing detail 
description to these three paths, we prove an important Theorem 2.

Theorem 2. Given the partial orders on 
 in and on 
 out, the following relationship is true for labels within the tessellated primitives:

λk(ves ) � λk(es) � λk(s), (9)

where λk(x) is the label of x for a certain primitive Mk.

Proof. We prove this theorem by contradiction. When λk(ves ) � λk(es) is not satisfied, it means for a certain label λk , 
λk(ves ) is IN or OUT , but λk(es) �= λk(ves ). Let us assume that λk(ves ) = in and λk(es) = on or OUT .

Because ves is inside of a closed regular set (solid) Mk , according to the continuity of space, any point in U (ves ), which 
is the neighborhood of ves , should be inside of Mk . And because e◦

s ∩ U (ves ) is not empty (superscript ◦ means interior), es
should be inside of Mk , which contradicts our assumption. �

Theorem 2 indicates that when we perform ve → e and es → s, from a low dimension to a high dimension, we are 
actually making choices in whether to preserve ON label or switch it to IN/OUT .

es → s: According to Theorem 2, if λk(es) �= on, then λk(es) = λk(s). Conversely, when λk(es) = on, we can build a trivial 
BSP (Thibault and Naylor, 1987) according to the neighboring faces which belong to Mk stored in es . The BSP can be used 
to compute the evaluation value λk(s) if a point can be sampled from s◦ ∩ U (es), where U (es) is the neighborhood space 
of es , and s◦ stands for the interior of s. However, we cannot guarantee that such a point can be found with an exact 
representation of double-precision. Thus, we achieve the es → s operation in an alternative way.

Let h+
s be the half of the supporting plane of s which lies on the interior side of es (see Fig. 18). By Theorem 3, the 

labels of points on the half-plane h+
s are identical. Since h+

s ∩ s �= ∅, we can compute λk(s) by determining λk(vx), where 
the vertex vx ∈ h+

s . For polygons, we can always find such a vertex, which is represented exactly (by planes or vertex 
coordinates). In addition, we assign each BSP splitting plane a normal vector by the normal of the triangle it contains, from 
which we can decide the orientation (SAME or OPPO) when λk(s) = on.

Theorem 3. The BSP is constructed by the neighboring faces around a certain edge e. Then the space label of all the points on the 
interior of the half-plane h are the same, if 1) e is within h, and 2) e is the boundary of h.

Proof. The correctness of the theorem is obvious because the supporting planes of the neighboring faces always cross the 
edge e and extend to infinity. �
ve → e: If λk(ve) = on, whether λk(e) = on can be evaluated by checking whether there are neighboring faces from Mk on e. 
If λk(e) �= on, we need to search the location of ve in Mk . The connectivity information contained in our tessellated meshes 
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Fig. 17. Finding neighborhood faces in Mk .

Fig. 18. a) Since the inner sample point includes geometric constructions, we choose the face vertex (orange) instead of computing the face label. b–d) 
Different types of classification. The simple structure of the neighborhood BSP guarantees the same classification result for all of the points on p+

s,sp . In d), 
the classification result is ON so it is necessary to determine the orientation from the normal of the BSP splitting plane q and the face normal p. In this 
case, the label should be OPPO because p and q are opposite.

allow us to easily find all neighboring faces of ve (Fig. 17). After that, we can use a BSP-based classification method to 
evaluate the high dimension label λk(e). Here, we use the other endpoint v ′

e as the sample point for the BSP classification. 
The BSP-based classification method is similar to that in es → s.

si → s j : In this path, we determine whether si and s j should share the same space label. The λk(s j) cannot inherit from 
λk(si) if their shared edge restores information of intersection neighborhood. The space label vector �(s j) is updated based 
on �(si) with the neighboring faces stored in their shared edges. Knowing which labels differ according to the primitives 
that these neighboring faces belong to, the recomputation of the label vectors is exactly the same as in es → s.

7.2. Seed label generation

The space label of the seed vertex v0 can be generated by a point-in-polyhedron test (Ogayar et al., 2005), using the 
octree as an acceleration structure (Frisken and Perry, 2002). However, a simpler strategy can be adopted, which chooses 
a vertex with known labels as the seed. The space labels of a vertex with the maximum x-coordinate are either OUT (IN, 
if the complement is applied on the mesh) or ON. The ON label can be determined by connectivity. Exceptions may occur 
due to our ignorance of coplanar situations. Vertexes may not be added to the primitive, even if they are on the surface of 
the primitive. Fortunately, if a seed vertex is chosen whose neighboring faces are not all coplanar, such exceptions can be 
effectively avoided.

Label vectors can propagate within a certain mesh, and between different meshes across shared edges. Thus, in most 
cases, only a single seed vertex is needed for classification. However, if there are more than two connected components 
among tessellated meshes, extra seeds are required. The labels of these additional seeds have to be computed by point-in-
polyhedron tests.

7.3. Acceleration by caching

In the situation that the CSG tree is large and contains hundreds of primitive nodes, the evaluations of Boolean expres-
sions f with space label vectors of each face can be time-consuming. To accelerate our approach, we take advantages of the 
label space coherence to reduce the computation time by caching the evaluation results.
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Our basic strategy is to cache the final evaluation results f (�(s)). Faces which share the same label vectors are clustered 
together. In a large CSG, a certain primitive often intersects with only a few other primitives � = {Mn1 , Mn2 , · · · , Mnx}. 
All of the faces in this primitive have the same labels with respect to primitives which are not in �. Therefore, once we 
determine these fixed labels and simplify the Boolean function, we can compute the final label in this primitive based on 
the simplified expression. An intermediate-result cache strategy is also applied for simplification in our approach. A Boolean 
expression can be simplified if some components of label vector are known. For example, assume we have a Boolean 
expression f = M1 ∪ (M2 ∩ M3 − M4). Given the values of two labels λ1(si) = out , λ2(si) = in, the expression can be 
rewritten as f (λ1 = out, λ2 = in) = out ∪ (in ∩ M3 − M4). Using the combination rules, we can simplify the expression to 
f (λ1 = out, λ2 = in) = M3 − M4.

8. Experimental results

Our method is designed for boolean evaluations on multi input of primitives (Requicha and Voelcker, 1985). Our current 
implementation requires primitives to be triangular solid meshes without self-intersection. Geometry connectivity is also 
required as inputs. To evaluate the performance of our approach, we implement our approach in C++ and apply it to 
massive models with different features. All the experiments are run on a desktop computer with an Intel Core i5 CPU and 
8GB of RAM. We compare the results generated by our approach with previous methods including CGAL (Hachenberger and 
Kettner, 2006), Cork (Bernstein, 2013), QuickCSG (Douze et al., 2015), Carve (Sargeant, 2011), the online service of Campen 
and Kobbelt’s plane-based method (Campen and Kobbelt, 2010; Kobbelt, 2010) and the method by Zhou et al. (2016) which 
is distributed in libigl. Our implementation, which is used for the following experiments and comparisons, is tailored to 
input given in single precision floating point vertex coordinates. It is guaranteed to be robust and give correct results if the 
input meshes are solids (free of self-intersections and free of degenerate triangles). Of course we can truncate any input 
to single precision, but this can in some cases cause self-intersections or degeneracies, such that our method cannot be 
applied correctly. Some of the robust methods we compare to, by contrast, more generally handle full double precision 
input robustly. This must be taken into consideration when interpreting the results.

8.1. Self-union on Thingi10K dataset

The Thingi10K dataset (Zhou et al., 2016) contains 9956 models in .stl files, which are heavily biased towards 3D printing 
modeling by amateurs or semi-professionals. However, not all the 9956 models are suitable for comparison. Because models 
in .stl files are triangle streams rather than meshes. We merge the exact coincident vertices to reconstruct connectivity 
and check the cleanness of all of the models. Among the 9956 meshes, 4509 models meet the requirements of solid. The 
face numbers of these meshes generally follow a log-normal distribution with the average of 17000. Our experiments are 
conducted on these solid meshes. To enable comparison, we also apply different methods on the qualified models with 
CGAL (Hachenberger and Kettner, 2006), Cork (Bernstein, 2013), Carve (Sargeant, 2011), QuickCSG (Douze et al., 2015) and 
LibiGl (Zhou et al., 2016) respectively. The method by Campen and Kobbelt (Campen and Kobbelt, 2010; Kobbelt, 2010)
is not included in the comparison of this section. The web service of Campen and Kobbelt (Campen and Kobbelt, 2010;
Kobbelt, 2010) does not support batch processing. Therefore, we made a few tests manually. However, roughly a half of 
them failed. But for a fair comparison, the manual tests are not included.

Our approach successfully generates results in 98.8% of the tests. Although there is still a small 1.2% gap compared to 
the-state-of-the-art LibiGL, our approach is still competitive in robustness. By robust, we mean that algorithms successfully 
produce output for solid input. Cleanness and completeness of the output are also essential. The cleanness of resulting 
meshes is evaluated by checking, open boundaries, self-intersecting (the VCG library (Cignoni, 2015)) and the total signed 
incidence of every edge (Zhou et al., 2016). Solid meshes are free of self-intersections and open boundaries. Meshes with 
zero total signed incidence in every edge is a strict subclass of PWN meshes. These criteria are necessary conditions for a 
solid mesh. As it is shown in Fig. 19, over 80% of our results are solids, which outperform other methods except for the 
state-of-the-art LibiGL. It is easy to notice relatively low rates of success for Cork and QuickCSG. The reason is that both 
methods are based on general position assumption, which is violated in the case of self-union. Even after perturbation, solid 
results can hardly be produced as shown in Fig. 23.

Although our approach successfully generates desired results in the test, there are still failure cases and unclean results 
in our experiments. The reasons lie on the degenerate faces and close-to-degenerate faces from the inputs. The normal 
vectors of degenerate faces cannot be defined and cause failure in face classification. In addition, close-to-degenerate faces 
may become degenerate faces or lead to self-intersecting (see Fig. 20) after conversion to their P-reps. This is caused by 
the coordinates rounding-off required in the conversion method we applied (Campen and Kobbelt, 2010). The vertexes of 
the final mesh are represented as either planes or vertex coordinates. The vertexes originating from the input meshes have 
exact coordinates, and the vertexes newly introduced by the intersection between meshes have only P-reps, and require 
round-off when computing their coordinates. Although our approach guarantees the correct topology in the final mesh, 
round-off errors may still cause topological deficiencies. This is called the vertex rounding problem. This problem can be 
solved iteratively with the method by Zhou et al. (2016). However, this step is not always necessary such as in the situation 
that pursues extreme efficiency.
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Fig. 19. The result meshes of our method for the self-union of Thingi10k are cleaner than most previous methods. The Cork and QuickCSG assume the 
general position and cannot handle self-union at all, so they failed to produce solids in most of the cases.

Fig. 20. After coordinates approximation (right), the “thin” triangle in the middle intersects adjacent faces and results in self-intersection on the mesh (red 
triangles).

Fig. 21. The performance of tests on Thingi10k (Zhou et al., 2016) and Barki et al.’s dataset (Barki et al., 2015). We outline the median of processing time 
for each method. The different histogram areas result from the different success rates. Our approach is competitive with the QuickCSG (Douze et al., 2015)
and is faster than the state-of-the-art LibiGL (Zhou et al., 2016).

In terms of the computation time, our method outperforms most of the other robust methods (see the violin histogram 
in Fig. 21 top). It is worth to note that, all though our approach is 1.2% lower than the state-of-the-art LibiGL in the rate of 
generating reasonable results in self-union tests, our approach is more than 2 times faster than LibiGL. Even compared with 
the fastest non-exact QuickCSG, our method takes only about two times of the processing time. We profile each stage of our 
method, and the results indicate the bottleneck is at intersection computation (see Fig. 24 top). The number of the triangles 
is also an important factor that influence the processing time. From Fig. 22, the linear relationship between triangle number 
and processing time implies the ability of our method to handle large Boolean evaluations.
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Fig. 22. For the self-union tests on Thingi10k, there exists a linear relation between the triangle number the processing time of our approach.

Fig. 23. First row: the results of self-union of components. QuickCSG (adding perturbation of 1e−12) and Cork cannot produce valid results. CGAL and Carve 
simple crashed and did not give any result for this example. Second row: In our self-union tests, QuickCSG tends to produce results with many boundary 
edges (green lines), and Cork tends to produce many self-intersecting faces (red faces).

Fig. 24. Performance profile of tests on Thingi10k (Zhou et al., 2016) and Barki et al.’s dataset (Barki et al., 2015). The time percentage of different stages 
are represented in different color. Each one-pixel column represents a test. All the tests are sorted by total processing time. Noted that different from 
the performance profile on Thingi10k, in the experiments on the dataset by Barki et al., the bottleneck shifts from intersection computation to Octree 
constructions.

8.2. Binary Boolean operations

The most common situations of Boolean evaluations in CAD are binary operation. 3D model designer and professionals 
frequently refine their models by adding or subtracting one shape in their tasks. Thus, we perform comparisons of binary 
Boolean evaluations to test whether our approach can be properly applied to this situation. We conduct a series of union 
and intersection tests on the dataset of Barki et al. (2015). The dataset of Barki et al. contains 26 triangle meshes. All of 
them are closed and manifold. We exhaustively perform union, intersection, and both asymmetric differences for all pairs, 
producing 26 × (26 − 1)/2 × 4 = 1300 results.
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Fig. 25. The resulting meshes of our method for variadic Boolean evaluations. From the left to the right is Organic, T1, T2, Sprocket, and Ring & Ball, 
respectively. The performance of our method is better on cases with loosely distributed primitives (T2, Sprocket, Ring & Ball).

The configuration of our tests includes the general position assumption. This assumption enables Cork and QuickCSG to 
produce correct results in more cases than during self-union tests. Note that such tests are performed only in the situation 
that completeness and coplanar faces are emphasized in CSG modeling. As it is shown in Fig. 21 bottom, our approach 
has significant advantages compared to other exact methods. When compared to the non-exact method QuickCSG, our 
approach has slight disadvantages in speed. It is worth to note that the bottleneck shifts from intersection computation to 
octree construction in this test (see Fig. 24 bottom). The shift of the bottleneck is caused by the reduction in intersections. 
Compared with self-union tests, the binary Boolean evaluations generally process fewer intersections. Another point that 
worth to notice is our approach have dramatic differences in performance when comparing with Carve. The differences is 
caused by our localizing the Boolean evaluations within intersection areas.

8.3. Variadic Boolean operations

To evaluate the performance of our approach when evaluating large CSGs with thousands and thousands of faces, we 
reproduce the experiments of Douze et al. (2015) (see Fig. 25). Some of the variadic test cases are not presented because 
of the 8GB memory limitation. Since only QuickCSG and our method are variadic, comparisons with the other methods 
are performed by decomposing CSG into binary Boolean operations. As shown in Table 1, our method is more efficient 
than other exact methods in most cases. But our approach still has room for acceleration when compared to Quick CSG. 
The reason for disadvantages in speed when facing QuickCSG is that our approach exhaustively computes all intersections 
between primitives to pursue good results. Although QuickCSG has advantages in execution, it sometimes generates deficit 
results even with solid inputs (please refer to supplemental materials). We add an extreme CSG with 801 primitives (the 
Ring & Ball in Table 1) to evaluate the effect of our label caching acceleration. This example is large and each of its primitive 
usually intersects with less than 10 other primitives. The evaluation time of Ring & Ball was 38.1 s without enabling the 
label caching mechanism. With label caching acceleration, the computational time is reduced to 20 s. Therefore, by applying 
label caching, the total computation time drops to only half of the original.

9. Summary

In this paper, we proposed a novel efficient and robust Boolean evaluation approach based on hybrid representation. 
Our approach is variadic and able to efficiently handle large meshes while robust with solid inputs. To achieve a win–win 
solution in the trade-off between efficiency and robustness, we creatively embed the P-reps and V-reps into the process 
of Boolean evaluation simultaneously. The P-reps allow us to conduct exact computation with predicates only and avoid 
accumulating numerical errors. The V-reps are used for coarse tests and fast neighborhood queries to reduce the amount of 
slow plane-based computation. The experimental results show that our approach has performance advantages compared to 
other exact methods, guaranteeing robustness under consistent inputs. One future direction for improving our approach is 
to optimize the computation of the CSGs that contain a lot of meshes within a small area. In these cases, many computed 
intersections will not appear as edges in the final mesh, leading to unnecessary tessellation. Optimization is needed to 
alleviate this problem. Another direction of developing our method is to loosen the input limits of our approach. The inputs 
of our approach are limited to solids. The input requirements of our method may be extended to Piecewise-constant integer 
generalized Winding Number (PWN) meshes, that allow self-intersection. We believe that this would be an interesting and 
valuable extension of our work.
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16)
Our approach†

Total Step 1 Step 2 Step 3 Step 4

2.75 0.892 1.32 0.397 0.118

14.4 0.691 2.71 8.11 2.87

5.52 0.162 1.11 3.29 0.746

0.386 0.093 0.105 0.149 0.034

20.0 1.04 3.55 8.61 6.68

y edges.
Table 1
Computation time statistics of the evaluations of large CSGs (seconds).

No. Model Face 
Num.

Mesh 
Num.

CGAL (Hachenberger 
and Kettner, 2006)

Cork 
(Bernstein, 2013)

Carve 
(Sargeant, 2011)

Quick CSG 
(Douze et al., 2015)

LibiGL 
(Zhou et al., 20

1 Organic 219k 6 – 14.3 63.1 0.580 56.79

2 T1 80k 50 1.00k 18.5 10.4 0.388 11.2

3 T2 7k 50 2.81k – 16.0 0.804 14.5

4 Sprocket 11k 52 211 – 4.26 (0.132)∗ 3.18

5 Ring & Ball 146k 801 – – 187 (1.10) 166

† Steps 1, 2, 3, and 4 are octree construction, intersection computation, tessellation and classification, respectively.
∗ The bracket indicates that although QuickCSG gives the answer, the result meshes are full of topology deficiencies that contain thousands of boundar
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .cagd .2018 .03 .021.
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