
JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.1 (1-21)

Computer Aided Geometric Design ••• (••••) •••–•••
Contents lists available at ScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

Accelerated robust Boolean operations based on hybrid

representations

Bin Sheng a,∗,1, Bowen Liu b,1, Ping Li c,1, Hongbo Fu d, Lizhuang Ma a,
Enhua Wu e,f

a Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
b Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong
c Faculty of Information Technology, Macau University of Science and Technology, Macau
d School of Creative Media, City University of Hong Kong, Hong Kong
e Faculty of Science and Technology, University of Macau, Macau
f State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China

a r t i c l e i n f o a b s t r a c t

Article history:
Available online xxxx

Keywords:
Boolean operations
Plane-based geometry
Constructive solid geometry

Constructive Solid Geometry (CSG) is one of the popular techniques that is widely applied
in 3D modeling. It combines primitive solids using Boolean operations. However, the
trade-off between efficiency and robustness of Boolean evaluation is difficult to balance.
Previous methods sacrifice either efficiency or robustness to achieve advantages in one
perspective. Recent works attempt to achieve excellent performance in both aspects
through replacing the conventional vertex-based representations (V-reps) with plane-
based representations (P-reps) of polyhedrons. Different from V-reps, the P-reps use plane
coefficients as meta-data and can lead to benign robustness. However, methods using P-
reps have disadvantages in efficiency compared to methods using V-reps. In this paper, we
proposed a Boolean evaluation approach that absorbs both the efficiency of V-reps based
methods and robustness of P-reps based methods. We design a Boolean evaluation method
combining P-reps with V-reps. The P-reps information is utilized for exact predicate
computation while information in V-reps is collected for fast topology query and coarse
tests. Our proposed approach is variadic: it evaluates a Boolean expression regarding multi-
input meshes as a whole rather than a tree of decomposed binary operations. We conduct
massive experiments and compare our results with those generated by the state-of-the-art
methods. Experimental results show that our approach is robust for solid inputs and has
advantages in performance compared to some previous non-robust methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Constructive Solid Geometry (CSG) is a popular modeling technique for Computer-Aided Design (CAD) and Computer-
Aided Manufacturing (CAM). Through using regularized Boolean operations (union, intersection and difference) (Requicha,
1977; Tilove and Requicha, 1980), complex models can be easily constructed with combined primitives. There are mainly
two categories of Boolean evaluation methods which are different in processing the intersections between primitives. One

* Corresponding author.
E-mail address: shengbin @sjtu .edu .cn (B. Sheng).

1 The first three authors contribute equally to this work.
https://doi.org/10.1016/j.cagd.2018.03.021
0167-8396/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cagd.2018.03.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:shengbin@sjtu.edu.cn
https://doi.org/10.1016/j.cagd.2018.03.021

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.2 (1-21)

2 B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–•••
Fig. 1. An overview of our Boolean evaluation framework based on hydrid representations. Vertex-based computation is included to maintained high
efficiency and plane-based computation is conducted to ensure exact geometry predicates. Our approach mainly contains three stages: intersection compu-
tation, face tessellation and face classification.

category is the approximate method (Pavić et al., 2010; Biermann et al., 2001; Wang, 2011). These methods approximately
fit the vertexes after discretizing the intersection areas, then rearrange the topology. The other category is the exact method
(Douze et al., 2015; Ogáyar-Anguita et al., 2015; Zhou et al., 2016). These methods are characterized by preservation of
the vertex positions and maximum maintenance of multiple input elements (such as faces, vertexes, and topology). Many
applications apply exact methods instead of approximate methods to pursue better accuracy. In addition, exact methods
provide an accurate mapping between the input surfaces and the output meshes. This map benefits the transfer of surface
information such as face colors and materials. We focus on the stream of exact methods in this paper.

There exists a trade-off between robustness and efficiency when designing Boolean algorithms. The robustness of the
methods is usually guaranteed by exact arithmetic (Barki et al., 2015; Zhou et al., 2016), which is significantly slower
than methods using normal floating-point arithmetic. Some methods apply other techniques such as epsilon-tweaking
(Laidlaw et al., 1986; Segal, 1990; Feito et al., 2013) and numerical perturbation (Douze et al., 2015) but can only
achieve quasi-robustness (Shewchuk, 1999). One important feature of these quasi-robust methods is the polyhedron rep-
resentations based on vertexes (V-reps). However, V-reps is not the only choice. Sugihara and Iri (1989) proposed the
plane-based representation (P-reps) for polyhedrons. The advantages of applying P-reps as primary geometric information
is that the rudimentary modeling operations can be conducted robustly. Under P-reps, the evaluation of Boolean expres-
sions is free from constructing new primary geometry information. In other words, no constructions are needed when
applying P-reps and the computations are restricted to predicates only. Some researchers (Bernstein and Fussell, 2009;
Campen and Kobbelt, 2010) picked up the P-reps and coupled them with Binary Space Partitioning (BSP) structures to de-
velop an exact and robust Boolean operator. Although these plane-based methods are generally faster than those relying
on exact arithmetic (Hachenberger and Kettner, 2005, 2006; Granados et al., 2003), plane-based methods are still limited
by the high computational complexity of the BSP algorithms. Additionally, to make the boundary representations of poly-
hedrons compatible with the BSP structure, extra steps of conversion and connectivity reconstruction are inevitable and
further deteriorates the runtime performance.

To properly handle the trade-off between efficiency and robustness, we develop a robust approach for Boolean evaluation,
which has sound robustness with consistent solid inputs without sacrificing efficiency. To achieve excellent performance
both in robustness and efficiency, we design a hybrid representation of solids combining P-reps with V-reps as shown in
Fig. 1. It absorbs the advantages of high efficiency of methods based on V-reps and strong robustness of methods using
P-reps simultaneously. In our approach, we take advantages of the V-reps information for coarse intersection and efficient
neighboring face queries in the face classification process. The P-reps information is used for exact geometry computations.
Our approach successfully increases the efficiency by avoiding constructions with exact arithmetic.

The architecture of our approach is more similar to vertex-based methods (Feito et al., 2013; Zhou et al., 2016) than BSP-
based methods (Bernstein and Fussell, 2009; Campen and Kobbelt, 2010). Note that our approach is a systematic solution of
robust Boolean evaluations rather than a simple improved version of the robust vertex-based method. Our approach mainly
contains three stages: intersection detection, face tessellation and face classification. In the first stage, triangle intersections
are encoded into sets of planes, which are used for determining exact tessellations (see Fig. 1 (b1) & (b2)). Subsequently,
faces in the tessellated meshes are classified using small local BSP trees, which are also compatible to the P-reps for en-
suring exactness (Fig. 1 (d1) & (d2)). Besides the feature of high efficiency and robustness, our method is also variadic
(Zhou et al., 2016), which means our approach is able to evaluate the whole input meshes without decomposition. These
features save a large amount of evaluation time by avoiding repetitive computation. In sum, our approach has the following
contributions:

• Plane-based intersection test: We develop a triangle–triangle intersection test suitable for geometric objects in plane-
based representation.

• Deferred tessellation using Tess-Graph: The tessellations of faces are conducted after all the intersections are detected
and refined. To avoid errors caused by extra conversion, we develop a Tess-Graph to extract subfaces.

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.3 (1-21)

B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–••• 3
• Accelerated face classification: In the final stage of determining whether a face belongs to the result meshes, we take
advantages of label consistency to accelerate the classifying process. In addiction, evaluation results are cached for
simplifying Boolean expression.

The rest of this paper is arranged as follows: Section 2 reviews literature of methods on Boolean evaluation; Section 3
provides background of Boolean evaluation based on V-reps and P-reps. We address the key problems on combining two
representation in our approach; Section 4 provides an overview on our approach; Section 5, 6 & 7 provide technical details
on the three stages of our approach respectively; Section 8 provides the experimental and comparison results; Section 9
summarizes the paper.

2. Related work

Boolean methods have been widely applied since their proposal (Laidlaw et al., 1986; Requicha and Voelcker, 1985;
Lin et al., 2016). When applying Boolean operations on 3D solid models, robustness and efficiency is always concerned.
Different techniques are applied to balance the performance and robustness.

V-reps based methods and exact arithmetic: Using V-reps as the numerical and geometrical substrates is a common practice
for many tasks in computer graphics including boolean methods. Previous methods based on V-reps (Ogáyar-Anguita et al.,
2015; Douze et al., 2015; Feito et al., 2013; Updegrove et al., 2016) often try to pursue robustness by using exact arithmetic
which provides the most promising solution to the numerical robustness problem. Fortune et al. (Fortune and Van Wyk,
1993; Fortune, 1995) handle Boolean operations on solids bounded by piecewise linear surfaces. Their methods are opti-
mized and integrated into CGAL (Hachenberger and Kettner, 2005; Granados et al., 2003). Keyser et al. (1999a, 1999b, 2004)
develop a system called ESOLID for boundary evaluation with exact arithmetic in the curved domain. Some other approaches
apply the interval computation technique. Hu et al. (1996a, 1996b) adopt rounded interval arithmetic for computing Boolean
operations on solids which contains spline surfaces. Fang et al. (1993) and Segal (1990) apply intervals (which they named
as tolerances) to maintain the algorithm’s decision records. To pursue robustness with exact arithmetic, it seems inevitable
to introduce extra computation and memory. Thus, these methods may be impractical when they are applied to arbitrary
solids with many triangles. The state-of-the-art method (Zhou et al., 2016) attempts to fix a large range of topological
deficiencies and achieve solid outputs through self-intersecting tests and vertex-rounding iterations. It has excellent per-
formance in robustness and sound execution speed. But when compared to the QuickCSG (Douze et al., 2015), it still has
disadvantages in efficiency. In fact, Douze et al., the authors of QuickCSG (Douze et al., 2015), pursue extreme efficiency at
the cost of robustness. They restrict the input to embedded polyhedron which satisfies general position assumption. They
also assume that coplanar does not exist. However, this assumption is often violated in CAD modeling. It is worth to note
that their method is variadic. In other words, their evaluation of Boolean expressions treats the input meshes as an entirety.

P-reps based methods and BSP techniques: V-reps is not the only choice for representing polyhedrons in graphical systems.
Sugihara and Iri (1989) first introduced the concept of Plane-based representations (P-reps) of polyhedrons in 1989. They
develop the P-reps in order to avoid topological inconsistency originating from the numerical errors. Their method is based
on the knowledge that when the original geometric data are represented by a finite number of bits, the relative topological
configuration of two or more geometric objects can be computed accurately in finite precision. All the geometric objects
in P-reps are represented by the coefficients of the surface equations. The relative topological relation between geometric
objects can be converted to a four-plane problem, which can be solved precisely by finite-precision computation. Fortune
(1997) noticed the advantages of P-reps and combined it with symbolic perturbation techniques at the cost of inflated
algorithmic complexity.

Besides V-reps and P-reps, the Binary Space Partitioning (BSP) structures are also able to represent polyhedral objects.
The BSP tree is a binary tree representing a space which is subdivided into convex sets by hyperplanes. It is originally
applied to organize an arbitrary set of polygons to obtain a fast solution for the visible surface problem. Naylor, Amanatides
and Thibault (Thibault and Naylor, 1987; Thibault, 1987; Naylor et al., 1990) discovered that BSP trees can provide exact
representations of an arbitrary polyhedron in any dimension. In addition, they provide a method of converting the boundary
representation of polyhedron to a BSP tree. Thus, evaluating a Boolean expression in the form of BSP tree become possible.

Bernstein and Fussell (2009) take advantages of both P-reps and BSP trees and develop a Boolean evaluation method
which is unconditionally robust with consistent inputs. Different from vertex-based methods, the robustness of their method
does not depend on exact arithmetic. Its time complexity is O (mn) where m and n are the sizes of the BSP trees. Campen
and Kobbelt (2010) made improvement through localizing BSP operation with an octree. In their method, mesh refine-
ment is only conducted in the neighbor of intersections. Thus, it requires two extra operations: an extra separation of the
intersection and the non-intersection region, and a reconstruction of topology.

Methods using approximate arithmetic: Since methods based on exact arithmetic may be impractical and have difficulties
in processing degenerated surface–surface intersection, some researches try to compute approximate Boolean operations
instead of exact ones. Most of these methods have excellent performance in execution. Biermann et al. (2001) design a

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.4 (1-21)

4 B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–•••
method for computing approximate results of Boolean operations on free-form solids bounded by multi-resolution subdi-
vision surfaces. Smith and Dodgson (2007) design a topologically robust algorithm which can guarantee the connectivity
of the output as long as the input representation has valid connectivity. Varadhan et al. (2004) accelerated their meth-
ods through reducing the complexity of output meshes. Wang (2011) reduced redundant tessellation by preserving the
non-intersected areas of the input meshes. Zhao et al. (2011) adopt a compact representation of axis-aligned surfels using
Layered Depth Images (LDI) as a bridge and performing Boolean operations on the structured points. With the develop-
ment of General-Purpose computing on Graphics Processing Units (GPGPU), some researchers (Hable and Rossignac, 2005;
Ogayar et al., 2006) explore the computational power of the graphic cards to accelerate the Boolean evaluations.

3. Preliminary

Our proposed approach is based on comprehensive investigation and analysis of previous methods. A closer look at the
causes of non-robustness of previous methods helps to understand the architecture of our approach. In this section, we
will give a brief introduction of Boolean evaluations and locate the origin that influence robustness. Also, the basics of
plane-based representation is presented and some of the definitions will be recalled. Then we analyze the key problems
that making the P-reps coexists with V-reps.

3.1. Boolean evaluation

Requicha (1980) formalized the approach of modeling with n input solids through combining pairwise operations in
arbitrary boolean expressions as Constructive Solid Geometry (CSG). A boolean expression of CSG can also be represented as
a binary tree where leaves represent primitives and the nodes stand for operation. Since solid objects are usually represented
by segmenting its boundary into a finite number of bounded subfaces (usually called Boundary representations of solids),
the boolean expression is actually determining whether the subfaces of a primitive belongs to the meshes of final result or
not. Let s be a certain face. Its relationship with the final mesh is determined by the Boolean expression f :

f (�(s)) = f (λ1(s), λ2(s), · · · , λn(s)), (1)

where λi(s) is the space label with respect to primitive Mi . Each label has four conditions: completely inside (in), completely
outside (out), on the boundary with consistent normal vector (same) or with opposite normal vector (oppo). To compute
f (�(s)), the labels with respect to all of the primitives (represented as �(s)) are required. It has been proved in Douze
et al. (2015), Feito et al. (2013) that s is on the surface of the final mesh if and only if f (�(s)) = same. Unfortunately,
not all the input faces can be classified correctly. Faces near the intersections of primitives are partially attributed to the
final mesh. Thus, an extra step of detecting meshes interactions is required before face classification. Input meshes are then
tessellated to ensure that every face is classified into one of four conditions (in, out, same, oppo).

Most of the existing Boolean methods adapt the two-step scheme: intersection computation and face classification. There
are three sources that numerical errors may easily be included and cause failure in robustness of these Boolean methods:

• Inaccurate computation of the intersection between faces.
• Inconsistent topology produced in face tessellation.
• Inconsistent computed results of the space label and the location of faces.

To achieve robust Boolean evaluations, operations and computations need to avoid numerical errors in the above three
sources. Our approach attempt to prevent numerical errors through applying plane-based representation in the numeric
substrates in these three sources.

3.2. Plane-based representation

Plane-based geometry is suggested to be suitable for conducting computation with fixed precision efficiently. We employ
plane-based representation to tackle the numerical errors from the three sources we previously mentioned. The plane-based
representation takes effect both in metric data but also topological data. In the conventional solid modeling systems, the
metric data are usually represented with coordinates with vertexes. To apply P-reps in our approach, metric data are rep-
resented by the coefficients of face equations. Let ax + by + cz + d = 0 be the equation of a plane p, where (a, b, c, d) are
coefficients in float point numbers. These coefficients are fundamental metric data in our approach. In terms of topological
data, all the geometric objects can be represented by planes. A point v can be regarded as the intersection of three planes
thus we can express the point v with a non-trivial plane triple v : (p0

v ∩ p1
v ∩ p2

v). Similarly, when a line is regarded as the
intersection of two planes, it is able to be represented as: l : (p0

l ∩ p1
l). Let the normal of a plane p be denoted as n(p), then

the positive direction of the line l is defined by n(p0
l) × n(p1

l). In P-reps, a polygonal face can be represented using a sup-
porting plane and several bounding planes. When trying to express a polygonal face s which has n edge, a supporting plane
ps,sp on which the face lies, and a set bounding planes {pi

s,b | i = 0, 1, ..., n − 1} are used. Each edge line ei
s is represented

by the intersection ps,sp ∩ pi . Vertex v i
s is represented by the intersection of ps,sp and two consecutive bounding planes.
s,b

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.5 (1-21)

B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–••• 5
Fig. 2. Plane-based representation of a triangle. A triangle can be represented as an intersection of four planes: one supporting plane and three bounding
planes.

The normal of a plane p is denoted as n(p). Specially, when trying to applying P-reps on a triangular face, four planes are
needed as it is shown in Fig. 2.

We compare difference in representing a vertex with P-reps and V-reps. A vertex is represented by four planes which
means with 4 × 3 = 12 parameters under P-reps while it takes only 3 parameters under V-reps. Thus, it easily seems that
computation under P-reps can be expensive. It suggests that at least three times computational burden compared to the
methods used with V-reps. This is the reason for methods based on pure P-reps do not have advantages in efficiency.
Previous researches try to speed up with numerical filters (Sugihara and Iri, 1989; Banerjee and Rossignac, 1996), but
the executive speed of pure plane-based methods still has distance from satisfaction. The problem of computational cost
deteriorates when P-reps meet the BSP technique. BSP techniques are substantially based on planes and naturally compatible
with P-reps in implementation. But the drawbacks of the BSP algorithms slower down the total speed of the P-reps based
Boolean methods. For one thing, the time complexity of BSP algorithms is high. For another, BSP structure destroys geometry
connectivity. It requires extra operations to reconstruct topological connectivity.

3.3. Combining V-reps and P-reps

Based on the analysis above, we arrive at an idea that to achieve high efficiency and strong robustness simultaneously
through combining the P-reps and V-reps. In our approach, V-reps are applied for coarse tests and fast connectivity queries
and P-reps are used in exact predicates. Through the hybrid usage of these two representations, we hope to gain the benefits
of efficiency by using V-reps and robustness by using P-reps.

However, the above win–win solution cannot be achieved through direct implementation. The difficulty lies in the di-
mension differences. The difficulty lies in two aspects. One is the conversion from V-reps to P-reps. To avoid introducing
numerical errors as far as possible, we implement the exact conversion method by Campen and Kobbelt (2010). Their
converting method is able to guarantee exact calculation of the plane coefficients with controlled precision. The preci-
sion can be set according to input vertex coordinate precisions. Their approach is able to handle full IEEE 754 single
precision input. In our implementation, the plane coefficient is embedded into double-precision floating point num-
bers. Since modern hardwares are optimized for adaptive exact predicates for floating point numbers (Shewchuk, 1997;
Priest, 1991), the calculation can be conducted efficiently with determinant sign predicates (Shewchuk, 1997). One of the
fundamental predicates is the relative position between a point and a plane. Suppose we have a point v , which is the
intersection of the three planes p, q and r. Thus, the plane representation of v is p ∩ q ∩ r. Let s be a plane which we are
going to justify its relative relationship with the point v . Let the plane equation be

f (xi) = ai x + bi y + ci z + di, where i ∈ {p,q, r, s} (2)

Then, we calculate the following determinant:

� =
∣
∣
∣
∣
∣
∣

ap bp cp

aq bq cq

ar br cr

∣
∣
∣
∣
∣
∣

∗

∣
∣
∣
∣
∣
∣
∣
∣

ap bp cp dp

aq bq cq dq

ar br cr dr

as bs cs ds

∣
∣
∣
∣
∣
∣
∣
∣

(3)

With the sign of �, we are able to obtain the relative position between the point v and the plane s. If � > 0, point v is
on the positive direction of the plane s, which mean the point is on the same side of the plane normal. The computation
above is conducted with static filter technique (Shewchuk, 1997) to achieve exactness.

Another difficulty lies in the dimension differences. Most of the V-reps based algorithms perform in low dimensions
which makes it difficult to be implemented under P-reps. For instance, one common operation in V-reps based 2D triangu-
lation and face classification is to project vertex coordinates onto 2-Dimensional planes or 1-Dimensional lines. To conduct
similar operation under P-reps is difficult because the vertex coordinates are not included in P-reps. To solve the dimen-
sional incompatibility, our solutions is to format the operations in low dimensions into high dimensions. The following are

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.6 (1-21)

6 B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–•••
Fig. 3. Geometric configuration of linear ordering of points in 3D under P-reps. Points va and vb are both on line lab . We convert this problem into the
plane ordering of pa and pb along lab .

Fig. 4. Illustration of Theorem 1. As it is shown, the angle between n‖(pa) and n‖(pb) is exactly θab .

three typical problems in 2D and we converted it into problems in 3D which can be solved within P-reps. The computation
between objects in P-reps can be accomplished with predicates only.

Point-line orientation: The point-line orientation describes the relative position between a point and a line. In a 2D sit-
uation with V-reps, the point-line orientation is determined through computation using the line parameters and point
coordinates. When computing point-line orientation in 3D with P-reps, we converted it to the problem of defining the rela-
tive position between a point and a plane which contains the line. Given a line l : (p0

l ∩ p1
l) and a point v within plane p0

l ,
we determine the point-line orientation though the relative position between v and p1

l . When v lies within p1
l , point v is

obviously on line l. Similarly, when point v lies in the positive direction of p1
l , it is on the right sides of l.

Linear ordering of points: The linear order of points along one line can be decomposed into the problem of binary com-
parison (see Fig. 3). Given a line l with two points on it, va : (p0

a ∩ p1
a ∩ p2

a), and vb : (p0
b ∩ p1

b ∩ p2
b), we need to determine

their relative order along l. To solve this problem, we choose one plane (pa and pb in Fig. 3 right) that is not parallel with
l from the P-rep of each point, then convert this problem into a problem of determining the linear order of planes. The
converted problem can be solved by the method of Banerjee and Rossignac (1996). The chosen planes should have the same
orientation with respect to l (positive dot product between the plane normal and the normal of l), and unqualified planes
need to be flipped.

Circular ordering of lines: During face tessellation, the neighborhoods of intersections are required. In other words, it
requires circular ordering of directed lines around a vertex (see Fig. 5). We sort the lines in a divide-and-conquer way
based on the relative order of each pair of lines. In this way, the problem is converted to computing the circular order of
two lines la and lb in a plane p0. The order is determined by the sign of sin θab , where θab ∈ (−π, π) is the angle from
la to lb in the top-view of p0. The sign of sin θab is the same as the sign of n(p0) · (la × lb). However, directly computing
this equation requires extra precision to explicitly compute la and lb . To avoid extra computation, we found an efficient
solution with Theorem 1. Theorem 1 enables us to obtain the sign of sin θab through calculation on plane normals. Since the
plane normals are three dimensional vectors, the calculation of Equation (7) is equivalent to computing a 3 × 3 determinant,
whose elements are all floating-point numbers.

Theorem 1. Given two directed lines la : (p0 ∩ pa) and lb : (p0 ∩ pb) within plane p0 , the following relation always stands:

sign(sin θab) = sign(n(p0) · (n(pa) × n(pb))) (4)

Proof. First, n(pa) and n(pb) are orthogonally decomposed along n(p0):

n(pa) = n‖(pa) + n⊥(pa)

n(p) = n‖(p) + n⊥(p),
(5)
b b b

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.7 (1-21)

B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–••• 7
Fig. 5. Geometric configuration of circular ordering of lines in 3D under P-reps. la : (p0 ∩ pa) and lb : (p0 ∩ pb) are within plane p0.

where the superscript ‖ refers to the component parallel with p0 and ⊥ means the component orthogonal to p0. Since
n(p0) is orthogonal to p0, we get:

n(p0) · (n(pa) × n(pb)) = n(p0) · (n‖(pa) × n‖(pb)). (6)

On the other hand, the angle between n‖(pa) and n‖(pb) is exactly θab (see Fig. 4). Therefore,

sign(sin θab) = sign(n(p0) · (n‖(pa) × n‖(pb))). (7)

By (6) and (7), the theorem is proved. �
4. Overview: Boolean evaluation based on hybrid representation

Our approach contains three stages: intersection computation, deferred tessellation and face classification. There are
similarities between our approach and some vertex-based Boolean method (Zhou et al., 2016; Feito et al., 2013). However,
our approach is not a simple plane-based implementation of the vertex-based algorithms. Instead, our approach is equipped
with specially design algorithms to tackle the numerical errors from different sources: triangle–triangle intersection tests,
triangle tessellation, and polygon classification. We give a brief introduction of the three stages of our approach in the
following paragraphs and more technical details are provided in the next three sections.

Intersection computation: At the beginning, we construct an octree on all the input meshes to make our method variadic
and speedup the computation. In the first stage, our main task is detecting the intersections. The computation of the
intersections between pairs of triangles is based on the Möller’s algorithm (Möller, 1997). To reduce the numerical errors
caused by the vertex-based implementation of the Möller’s algorithm, all the intersections are represented using planes
(Fig. 1(b2)). We only retained the vertex-based coarse test to preserve the fast early rejection (Fig. 1(b1)). Degenerated cases
in intersection (such as coplanar) are carefully processed. In addition, octrees are applied to speed up our computation
(Fig. 1(a)).

Deferred tessellation: After all the intersections between triangles are determined, the input meshes need to be subdivided
to ensure all intersections occur on edges and vertexes (Fig. 1(c)). In our approach, an intersection refinement is introduced
to resolve the overlapped regions between the intersections. The refinement is essential to support variadic Boolean evalua-
tion. Then we construct a structure graph called tess-graph to guide the exact tessellation of each face. The subdivided faces
are polygons rather than triangles.

Face classification: In the final stage of approach, faces that satisfy the Boolean expression from the tessellated meshes
are collected to generate the final mesh. In this stage, we utilize the connectivity information to propagate space labels
in a flood-filling manner (Fig. 1(d1)). The seed face label is exactly computed by a local BSP constructed according to
the neighborhood of the face (Fig. 1(d2)). In this stage, we focus on pursuing high efficiency and try to accelerate every
computing steps.

5. Intersection computation

The initial stage of our approach is to detect intersections between faces with triangle–triangle intersection tests. One of
the simple and efficient ways is to apply the Möller’s algorithm (Möller, 1997). However, the original Möller’s algorithm is
vertex-based and can not be directly applied with plane-based geometry. In addition, it easily introduces numerical errors
in float point arithmetics. Thus, we develop a plane-based intersection algorithm based on Möller’s algorithm.

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.8 (1-21)

8 B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–•••
Fig. 6. Octree comparison.

Fig. 7. The geometry of planes in a Plane-Based Intersection representation (PBI-rep). In our approach, the intersecting lines are restored in PBI-rep. The red
line segment (I) is the intersection represented by I . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)

5.1. Space division

As intersection detection is performed between each pair of faces, space division is necessary to reduce the number of
testing pairs. In our approach, the space division is conducted with an adaptive octree. The intersections between triangles
and octree nodes are efficiently detected using the separating axis theorem (Gottschalk et al., 1996). The leaves of octree
are classified into two categories. If all faces that intersect a leaf belong to the same mesh, the leaf is called a normal cell.
Otherwise, it is regarded as a critical cell. The triangle–triangle intersection tests are performed in the critical cell only. We
make a comparison between our octree and that of Ogayar et al. (2006). As it is shown in Fig. 6, the normal cells in our
octree are not divided in our octree. Ogayar et al. (2006) divide all the normal cells in their octree for the purpose of the
point-in-polyhedron test (Frisken and Perry, 2002), which has a limited enhancement in performance. Thus, we omit the
division of the normal cell for saving computational time. This simplification for time saving is significantly especially when
intersections between primitives are sparsely located in small regions.

5.2. Plane-based intersection test

Our intersection test is a plane-based algorithm based on the Möller’s algorithm. We adapt the original Möller’s algo-
rithm to plane-based geometry and develop the corresponding plane-based algorithm. In addition to making the algorithm
theoretically correct, we also provide the implementation details.

5.2.1. Plane-based intersection representation
In our approach, an intersection line segment I is stored as {T , P ext, P 0, P 1, N }. We name it as the Plane-Based In-

tersection representation (PBI-rep, see Fig. 7). The first component, T , indicates which triangle I lies in. P ext indicates the
plane that I lies on. T should not be in P ext . Thus, the first two components indicate that I lies on the line T ∩ P ext . Then,
the two endpoints of I are T ∩ P ext ∩ P 0 and T ∩ P ext ∩ P 1. The last component, N , represents the intersection neighborhood
of I . It is defined as the neighboring faces of I , which are not from the primitive of T . N can be a single face or a set
faces from one or more input primitives.

For example, two triangle faces, t1 and t2, originating from meshes Mi and M j respectively, intersect. Two intersections
I12 on t1 and I21 on t2 are generated. For I12, T = t1 and P ext = pt2,sp . P 0 and P 1 are boundary planes of t2, which will
be discussed later. The last component N = t2 in general. Sometimes, I12 may lie on the edge of t2 (see the four different
conditions in Fig. 10). These are degenerate cases, called edge intersection. In this situation, the N is the set of all the faces
from M j adjacent to that edge. Edge intersection will be discussed in section 5.3.

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.9 (1-21)

B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–••• 9
Fig. 8. Plane-based intersection detection. Seg1 is the intersection between pt2,sp and t1. Seg2 is the intersection between pt1,sp and t2. The intersection
between t1 and t2 (segment in red line) is the overlapped region of Seg1 with Seg2.

Fig. 9. We denote the signed distance from point vi to plane pt2,sp as di . The four conditions of intersection between t1 and pt2,sp are: a) d0 · d2 < 0,
d1 · d2 < 0; b) d0 = 0, d1 = 0, d2 �= 0; c) d0 = 0, d1 · d2 < 0; d) d0 = 0, d1 · d2 > 0. Endpoints of Seg1 are the intersections between pt2,sp and the related
edges of t1 (bold red lines).

5.2.2. Plane-based intersection detection
Before conducting intersection detection, we first convert each triangle to its P-reps. That is a supporting plane pt,sp

surrounded by three bounding planes {pi
t,b | i = 0, 1, 2}. Then we compute the intersections between two triangles t1 and t2

(shown in Fig. 8) with the following steps:

1. Testing whether t1 intersects pt2,sp , the supporting plane of t2. The same test is also carried out between t2 and pt1,sp .
If the intersections do not exist, early rejection is returned.

2. Compute the intersection between t1 and pt2,sp , denoted as Seg1, and the intersection between t2 and pt1,sp , denoted
as Seg2 respectively.

3. Determining whether t1 intersect t2 by computing the overlap between Seg1 and Seg2. The overlap is determined
according to the linear orders of the endpoints in Seg1 and Seg2.

Different from the original Möller’s algorithm and previous methods, our plane-based intersection algorithm does not
use the costly arbitrary precision arithmetic to produce exact coordinates. The exact computation is achieved with the
usage of plane-based representation. In the first step, the computation of signed distances involves the vertex coordinates
and the supporting planes of triangles only. Therefore, if the early rejections occur, the bounding planes are not needed at
all. Additionally, the supporting plane is represented by four double-precision floating-point numbers with the conversion
method of Campen and Kobbelt (2010). Let us denote precisions of the first three parameters and the last parameter to be
La and Ld , respectively. There exists a relation Ld = La + L + 1, where L is the precision of the coordinates of input vertexes.
This relation allows us to compute the signed distance exactly in double-precision. With these two facts, our early rejection
is equally efficient as the rejection in original Möller’s algorithm.

If early rejection is not triggered and t1 and t2 are not coplanar, Seg1 and Seg2 are computed. In fact, what we need to
obtain is the endpoints of Seg1 and Seg2 in P-reps. The endpoints are intersections between the supporting plane of one
triangle and an edge of the other triangle. By computing the bounding planes, the endpoints can be implicitly represented
by plane triples. For example, the endpoint of the red overlap segment in Fig. 8 (which is represented in an empty circle),
can be expressed with pt2,sp ∩ pt1,sp ∩ pi

t1,b , where pi
t1,b is the bounding plane of the related edge. Fig. 9 shows all of the

possible intersection conditions between t1 and pt2,sp . The coplanar situation will be discussed specifically in section 5.3.
With the P-reps of the endpoints, whether Seg1 and Seg2 have overlap segment can be easily determined according to the
linear ordering of endpoints.

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.10 (1-21)

10 B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–•••
Fig. 10. There are four conditions of two triangles intersect on an edge. Triangle faces t1 and t∗
1 are companion faces. Similarly, t2 and t∗

2 are companion
faces. a) t2 and t∗

2 are on different sides of t1. b) t2 and t∗
2 are on the same side of t1. c) t∗

2 is coplanar with t1. d) Both t1 and t2 have companion faces:
the intersection is an edge intersection for both t1 and t2 (instead of only for t2 is the previous three conditions).

Fig. 11. a) Coplanar situation. t1 and t2 intersect in 2D, dividing each other into a convex overlapping area and an exclusive area. b) Possible configurations
of the companion faces. ta is coplanar with t1, while tb and tc are on different sides of t1. The blue triangles originate from the same mesh. The yellow
segment is not necessarily belonged to the final mesh, and may not be detected. The red segments can be detected during intersection tests between t1

and the companion triangles (tb and tc).

5.3. Handling degenerate situations

Intersections between triangles are line segments in most circumstances. But they may possibly be points in a convex
area. The intersections may also be on a primitive edge. The existence of degenerate situations seriously affects the ro-
bustness of our Boolean operations. We classify the degenerate cases into three categories and provide simple but effective
methods to handle these cases.

Intersection at a point: If two triangles intersect at a single point (e.g., Fig. 9(d)), the intersection cannot be represented with
our PBI-reps. To guarantee correct tessellation in this situation, the intersection point is added into the related triangles. In
this simple way, we avoid introducing extra intersection line segment.

Intersection on an edge: When a triangle (as t1) intersects on the edge of another triangle (as t2), the generated intersection
is more complicated. In the case that intersection appears on the edge of triangle, t2 has a neighboring face (as t∗

2) which
intersects t1 on the same edge (see Fig. 10 for different cases). The intersection neighborhood is a set of all faces that share
a common edge, rather than a single face. For example, in Fig. 10(a), the intersection neighbors of t1 are t2 and t∗

2. t2 and
t∗

2 are also called the companion triangles. The intersection between t1 and t2 will be detected again during intersection
detection between t1 and t∗

2. When cases of intersection on the edge appear, we only need to handle the duplication in
tessellation.

Coplanar: Coplanar refers to the case that two triangle faces intersect within a common plane. As it is shown in Fig. 11(a),
t1 and t2 divide each other into two areas: a convex overlapping area and an exclusive area. In our approach, we regard
coplanar as an except case. Coplanar cases are processed as no intersections. This processing method is reasonable if cases
of intersections on the edge can be properly handled. In this way, we get rid of the complex situations of 2D intersections
without having any negative effects on the topological correctness. According to our observation, we notice that t1 is actually
clipped by edges of t2 (see Fig. 11(a)). This suggests that the coplanar between two triangles can be regarded as special
cases of intersection on the edge. But in coplanar cases, there can be three edge intersections at most (red and yellow
line segments in Fig. 11(b)). Similar to the cases of intersection on the edge, the intersections in the coplanar cases will
be detected multiple times in triangles that share common edges. In an extreme situation that all the companion triangles
are coplanar, none of them will be detected in the intersection (the yellow segment in Fig. 11(b)). Fortunately, the case
that all the faces of intersection neighborhood are all within the same plane is quite rare. If such an intersection enters

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.11 (1-21)

B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–••• 11
Fig. 12. a) Different colors indicate that the intersections originate from different meshes. The yellow and red intersections intersect at a point. The yellow
intersection overlaps with the green intersection. b) After refinement, we introduce a new vertex va , and merge overlapping intersections into a single
edge eb . c) Our tessellation method does not guarantee that all of the faces are triangular. d) If triangulation is performed, new edges (red line segments)
are introduced and double-precision is not enough to hold the plane coefficients of their P-reps.

the surface of the final mesh, the surface in the intersection neighborhood is definitely a plane. Therefore, it is safe to
omit these types of intersections because the intersection is not necessary to be an edge in the final model. Since the
coplanar intersections are not specially processed, the overlapping areas (t1 ∩ t2 and t1 ∩ ta) may have different tessellations
in different primitives. But our approach is free from the inconsistent topology in the final mesh. In fact, there is no need
to worry about inconsistent topology because faces from a certain primitive in such coplanar areas are either collected or
abandoned together. The coplanar areas that become the surface of the final mesh will inherit only one of the tessellations.

6. Deferred tessellation

Tessellation is performed on each intersecting triangle after intersection computation. It is conducted after all the inter-
sections are detected rather than clipping triangles incrementally at each step of intersection computing. In this stage, we
first performs an intersection refinement to guarantee that intersections intersect each other only at endpoints. Then, we
perform our minimal tessellation based on tess-graph, which is a graph-like description of the intersections on a given face.

Many methods use Constrained Delaunay Triangulation (CDT) to perform tessellation on triangles. In these methods,
triangle faces are treated as the convex target zones and the triangulation is conducted using the intersections as constraints.
However, those CDT algorithms (Chew, 1989; Preparata and Shamos, 1985) are performed in 2D. For 3D applications, the
CDT algorithm needs to be mapped to three dimensions. Even after mapping, implementing a plane-based CDT requires the
introduction of extra planes. Extra planes are included to ensure that each subface is a triangle (see Fig. 12(d)). In practice,
we notice that even double-precision storage is not enough for storing the coefficients of these planes. Therefore, instead of
applying CDT, we conduct a minimal tessellation on each triangle. With the minimal tessellation, subdivided faces become
general polygons instead of triangles.

6.1. Intersection refinement

From the intersection test in the previous stage, we are equipped with the intersection information of the triangles.
However, the intersecting lines may also intersect each other. As it is shown in Fig. 12(a), the new points can either be gen-
erated by crossing of intersecting lines (e.g., the cross point generated by the red and yellow lines) or the overlap between
intersecting lines. The purpose of the refinement is to locate the points generated by the crossing of intersecting lines, and
optimize the triangle–triangle intersections information before the final tessellation. We apply intersection refinement on
each intersecting triangle. For a triangular face t , we collect all of the intersections in PBI-reps on t as a set �(t) = {I|T = t}.
Note that the three edges of t are also included into the �(t) for they are also used in subface extraction. For the PBI-reps
of the three edges of t , their intersection neighbor component N is set as N/A because they are not real intersections. The
intersection refinement is conducted on the set �(t) using plane-based geometric predicates only and we denote the refined
set as �′(t). The refinement mainly contains the following two steps: coincidence elimination and intersection resolving.

Coincidence elimination: If two intersecting lines have the same endpoints, they are coincident intersections. Because
our intersection is recorded in PBI-rep, to determine whether two intersections I1 = {t, P 1

ext, P 1
0, P

1
1, N 1} and I2 =

{t, P 2
ext, P 2

0, P
2
1, N 2} are coincident, we need to compare their third and forth components. That is whether P 1

0 = P 2
0 and

P 1
1 = P 2

1. Since intersections are non-directive, the order of endpoints does not affect the determination of coincidence. In
other words, when P 1

0 = P 2
1 and P 1

0 = P 2
1, I1 and I2 are also coincident. Coincident intersections are merged together.

Suppose I1 and I2 are coincident, we merged them into one intersection Imerged = I1 ∪ I2 = {T , P ext, P 0, P 1, N 1 ∪N 2}.
Note that the first four components are directly inherited from I1 or I1 . The intersection neighborhood component N is
a union of the neighbor information from I1 and I1 . It suggests that Imerged may contain faces from different primitives
after this phase.

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.12 (1-21)

12 B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–•••
Fig. 13. Conditions of intersections.

Intersection resolving: After eliminating coincident intersections in �(t), we need to detect whether the remained inter-
secting lines intersect in any location other than endpoints. We conduct intersection test between intersecting lines from
different primitives. The intersection test is a series computation on point-line orientation in P-reps. Given two intersection
I1 = {T , P 1

ext, P 1
0, P

1
1, N 1} and I2 = {T , P 2

ext, P 2
0, P

2
1, N 2}, we first compute the point-line orientation between the line I2

and the two endpoints of I1 . Then compute the point-line orientation between the line I1 and the two endpoints of I2 .
Through the relative position of the four endpoints, we can easily determine whether I1 and I2 intersect or not. As it is
shown in Fig. 13, there are three types of intersection that may occur between intersecting lines. In these situations, at
least one of intersecting line is split and a new vertex is generated at the cross. The P-rep of the new generate vertex is
P 1

ext ∩ P 2
ext ∩ t . In the situation of overlap, the PBI-rep of the overlapping segment can be easily constructed through absorb

the new vertexes as the endpoint components and partially inherit other components from I1 and I2 . Note that the coin-
cidence elimination will be repeated again after intersection resolving. Because if two intersections are colinear, resolving
their overlap can produce new coincident intersections.

6.2. Tessellation by tess-graph

To perform tessellation and extract subfaces, we develop a graph description of the tessellated face topology, called
Tess-Graph. For each intersecting triangle face t , a tess-graph is constructed according to the intersections contained in the
set �′(t). In a tess-graph, intersections are represented by the connections between nodes. The nodes of the tess-graph
represent the endpoints of the intersections. The tess-graph can be easily constructed according to the PBI-rep in �′(t).
Equipped with the tess-graph, subfaces can be easily extracted by constructing valid loops. A valid loop is a loop in the
tess-graph which satisfies two criteria:

• the direction of the loop should be consistent with the face normal;
• consecutive connections on the loop should be adjacent by a circular order.

Each valid loop corresponds to an intersection-free face. After all of the valid loops are determined from the tess-graph, the
corresponding face is tessellated into a series of subfaces (see Fig. 15). Noted that to facilitate face classification in the next
stage, we restore the neighboring components N of the PBI-reps on the edges of each subfaces when constructing the valid
loops.

6.3. Tess-graph with multiple components

The tess-graphs we generate are not necessarily a connected graph. If a tess-graph contains more than one connected
component, we need to merge identical valid loops to generate polygons with the non-zero genus. To find identical loops,
we construct an auxiliary connection Cext for each inner component, which connects a vertex vo on the outer component
and a vertex v i on the current inner component (see Fig. 14(a)). After that, we search among the connections belonging to
the current inner component that intersects Cext to find the one (as C1) which is the nearest to vo . Then another search
is conducted among the connections not belonging to the current inner component that intersects Cext , and find the one
(as C2) which is the nearest to C1. Finally, by locating the valid loops that C1 and C2 within, we find the identical pair of
loops.

To guarantee that Cext has an exact P-rep in double-precision, an arbitrary vertex of the current triangle is chosen as
the vo . On the other hand, v i must be the vertex generated by the intersection between a triangle and an edge (as e). All
intersection points introduced by triangle–triangle intersections are of this type. In this way, we obtain three vertexes with
exact coordinates (vo and the two endpoints of e). Therefore, we can construct the plane on which Cext lies by the same
method of generating supporting planes of triangle faces (see Fig. 14(b)).

7. Face classification

In this stage, the space label vector �(s) of the faces are computed and faces are determined whether it can become
a part of the final mesh according to the evaluation results λ f (s). All the faces are classified by evaluating their space

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.13 (1-21)

B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–••• 13
Fig. 14. a) We construct an auxiliary connection to connect each inner component with outer component (the red line segment). By checking the intersec-
tions on the auxiliary connection, we find that the orange loops are identical. b) We construct the P-rep of the auxiliary connection by vo and the exact
coordinates of the endpoints of the edge e.

Fig. 15. a) To tessellate a triangle, all the valid loops on its corresponding tess-graph should be found. The direction of the loops must be coherent with
the triangle normal (assuming here that the normal points to the outside of the paper). b) Each circular adjacent edge pair is an angle of the tessellated
polygon.

label vectors �(s) with the boolean expression f (Equation (1)). Adjacent faces likely share the same space label vectors.
Our classification method takes advantages of the spatial coherence of the label vectors and propagates the classification
results between neighboring faces. The main challenge in the propagation is to efficiently determine whether two adjacent
faces do share the same label and how to calculate the label vectors. For arbitrary adjacent faces s1 and s2, the space label
vectors �(s1) and �(s2) differ if their shared edge e12 lies on the surface of any other primitive. Recall that the neighbor
information of intersections (the N from PBI-rep) is retrieved in the edge of the subfaces the stage of deferred tessellation.
Thus, some neighboring faces must be stored on e12. In addition, the neighbor information of intersections can help us to
locate the different components between the space label vectors �(s1) and �(s2), and thus allow us to quickly compute
the new space label with BSP technique. The outline of our classification is shown in Algorithm 1.

Algorithm 1 Fast face classification.
Input: Tessellated primitives and Boolean expression f
Output: Classification f (�(si)) of each face si

1: Select a proper seed face s0;
2: Compute the seed label vector �(s0);
3: propagate(s0 , �(s0));
4:
5: function propagate(s , �(s))
6: Compute f (�(s));
7: for each neighboring face ss,i do
8: if si has been classified then
9: continue;

10: end if
11: if there are PBI-reps Ik on e(ss,i , s) then
12: compute �(ss,i) by �(s) and Ik ;
13: propagate(ss,i , �(ss,i));
14: else
15: propagate(ss,i , �(s));
16: end if
17: end for
18: end function

7.1. Label computation and propagation

Previous methods like Feito et al. (2013), Ogáyar-Anguita et al. (2015) evaluate the space label of a face through com-
puting the space label of the barycenter. This computation is based on the fact that the face can be treated as a whole,
and all inner points of the face share one label vector. In the methods like Zhou et al. (2016), label computation is based
on points inside the cell, and the face labels are determined according to the labels on the two sides of the face. However,
all the methods above require introductions of new points which take rational numbers space to restore coordinates. If the
accuracy of the stored coordinates decreases, round-off errors may occur. To avoid involving extra points, we utilize the

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.14 (1-21)

14 B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–•••
Fig. 16. Label propagation.

vertexes of a face to compute the space label. To conduct label computation based on vertexes, we need to solve two dis-
crepancies. One discrepancy is that the space label of a vertex is not always same to the space label of the face. The other
discrepancy is that the space label of a face has two more values than the space label of a vertex. For the space label of a
vertex v , λ(s) ∈ {in, out, on}. But for the space label of a face (s), λ(s) ∈ {in, out, same, oppo}. This discrepancy is attributed
to the orientation of a face. The label same and oppo are in fact sub labels of the label on.

To deal with these discrepancies, we optimize the propagating path and the initial computation. We start from a seed
vertex v0, which is one of the endpoints of an edge e0 of a face s0. We assume that the label vector �(v0) is known. Then
we use �(v0) to compute �(e0), and then �(s0). As shown in Fig. 16, the trace of label propagation is:

v0 → e0 → s0 → s1 → s2 → (8)

There are three basic paths in the propagation: ve → e, es → s and si → s j , where ve is the endpoint of e, es is the edge
of s, and si is adjacent to s j . The operations are described in detail in the following paragraphs. Before providing detail
description to these three paths, we prove an important Theorem 2.

Theorem 2. Given the partial orders on
 in and on
 out, the following relationship is true for labels within the tessellated primitives:

λk(ves) � λk(es) � λk(s), (9)

where λk(x) is the label of x for a certain primitive Mk.

Proof. We prove this theorem by contradiction. When λk(ves) � λk(es) is not satisfied, it means for a certain label λk ,
λk(ves) is IN or OUT , but λk(es) �= λk(ves). Let us assume that λk(ves) = in and λk(es) = on or OUT .

Because ves is inside of a closed regular set (solid) Mk , according to the continuity of space, any point in U (ves), which
is the neighborhood of ves , should be inside of Mk . And because e◦

s ∩ U (ves) is not empty (superscript ◦ means interior), es
should be inside of Mk , which contradicts our assumption. �

Theorem 2 indicates that when we perform ve → e and es → s, from a low dimension to a high dimension, we are
actually making choices in whether to preserve ON label or switch it to IN/OUT .

es → s: According to Theorem 2, if λk(es) �= on, then λk(es) = λk(s). Conversely, when λk(es) = on, we can build a trivial
BSP (Thibault and Naylor, 1987) according to the neighboring faces which belong to Mk stored in es . The BSP can be used
to compute the evaluation value λk(s) if a point can be sampled from s◦ ∩ U (es), where U (es) is the neighborhood space
of es , and s◦ stands for the interior of s. However, we cannot guarantee that such a point can be found with an exact
representation of double-precision. Thus, we achieve the es → s operation in an alternative way.

Let h+
s be the half of the supporting plane of s which lies on the interior side of es (see Fig. 18). By Theorem 3, the

labels of points on the half-plane h+
s are identical. Since h+

s ∩ s �= ∅, we can compute λk(s) by determining λk(vx), where
the vertex vx ∈ h+

s . For polygons, we can always find such a vertex, which is represented exactly (by planes or vertex
coordinates). In addition, we assign each BSP splitting plane a normal vector by the normal of the triangle it contains, from
which we can decide the orientation (SAME or OPPO) when λk(s) = on.

Theorem 3. The BSP is constructed by the neighboring faces around a certain edge e. Then the space label of all the points on the
interior of the half-plane h are the same, if 1) e is within h, and 2) e is the boundary of h.

Proof. The correctness of the theorem is obvious because the supporting planes of the neighboring faces always cross the
edge e and extend to infinity. �
ve → e: If λk(ve) = on, whether λk(e) = on can be evaluated by checking whether there are neighboring faces from Mk on e.
If λk(e) �= on, we need to search the location of ve in Mk . The connectivity information contained in our tessellated meshes

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.15 (1-21)

B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–••• 15
Fig. 17. Finding neighborhood faces in Mk .

Fig. 18. a) Since the inner sample point includes geometric constructions, we choose the face vertex (orange) instead of computing the face label. b–d)
Different types of classification. The simple structure of the neighborhood BSP guarantees the same classification result for all of the points on p+

s,sp . In d),
the classification result is ON so it is necessary to determine the orientation from the normal of the BSP splitting plane q and the face normal p. In this
case, the label should be OPPO because p and q are opposite.

allow us to easily find all neighboring faces of ve (Fig. 17). After that, we can use a BSP-based classification method to
evaluate the high dimension label λk(e). Here, we use the other endpoint v ′

e as the sample point for the BSP classification.
The BSP-based classification method is similar to that in es → s.

si → s j : In this path, we determine whether si and s j should share the same space label. The λk(s j) cannot inherit from
λk(si) if their shared edge restores information of intersection neighborhood. The space label vector �(s j) is updated based
on �(si) with the neighboring faces stored in their shared edges. Knowing which labels differ according to the primitives
that these neighboring faces belong to, the recomputation of the label vectors is exactly the same as in es → s.

7.2. Seed label generation

The space label of the seed vertex v0 can be generated by a point-in-polyhedron test (Ogayar et al., 2005), using the
octree as an acceleration structure (Frisken and Perry, 2002). However, a simpler strategy can be adopted, which chooses
a vertex with known labels as the seed. The space labels of a vertex with the maximum x-coordinate are either OUT (IN,
if the complement is applied on the mesh) or ON. The ON label can be determined by connectivity. Exceptions may occur
due to our ignorance of coplanar situations. Vertexes may not be added to the primitive, even if they are on the surface of
the primitive. Fortunately, if a seed vertex is chosen whose neighboring faces are not all coplanar, such exceptions can be
effectively avoided.

Label vectors can propagate within a certain mesh, and between different meshes across shared edges. Thus, in most
cases, only a single seed vertex is needed for classification. However, if there are more than two connected components
among tessellated meshes, extra seeds are required. The labels of these additional seeds have to be computed by point-in-
polyhedron tests.

7.3. Acceleration by caching

In the situation that the CSG tree is large and contains hundreds of primitive nodes, the evaluations of Boolean expres-
sions f with space label vectors of each face can be time-consuming. To accelerate our approach, we take advantages of the
label space coherence to reduce the computation time by caching the evaluation results.

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.16 (1-21)

16 B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–•••
Our basic strategy is to cache the final evaluation results f (�(s)). Faces which share the same label vectors are clustered
together. In a large CSG, a certain primitive often intersects with only a few other primitives � = {Mn1 , Mn2 , · · · , Mnx}.
All of the faces in this primitive have the same labels with respect to primitives which are not in �. Therefore, once we
determine these fixed labels and simplify the Boolean function, we can compute the final label in this primitive based on
the simplified expression. An intermediate-result cache strategy is also applied for simplification in our approach. A Boolean
expression can be simplified if some components of label vector are known. For example, assume we have a Boolean
expression f = M1 ∪ (M2 ∩ M3 − M4). Given the values of two labels λ1(si) = out , λ2(si) = in, the expression can be
rewritten as f (λ1 = out, λ2 = in) = out ∪ (in ∩ M3 − M4). Using the combination rules, we can simplify the expression to
f (λ1 = out, λ2 = in) = M3 − M4.

8. Experimental results

Our method is designed for boolean evaluations on multi input of primitives (Requicha and Voelcker, 1985). Our current
implementation requires primitives to be triangular solid meshes without self-intersection. Geometry connectivity is also
required as inputs. To evaluate the performance of our approach, we implement our approach in C++ and apply it to
massive models with different features. All the experiments are run on a desktop computer with an Intel Core i5 CPU and
8GB of RAM. We compare the results generated by our approach with previous methods including CGAL (Hachenberger and
Kettner, 2006), Cork (Bernstein, 2013), QuickCSG (Douze et al., 2015), Carve (Sargeant, 2011), the online service of Campen
and Kobbelt’s plane-based method (Campen and Kobbelt, 2010; Kobbelt, 2010) and the method by Zhou et al. (2016) which
is distributed in libigl. Our implementation, which is used for the following experiments and comparisons, is tailored to
input given in single precision floating point vertex coordinates. It is guaranteed to be robust and give correct results if the
input meshes are solids (free of self-intersections and free of degenerate triangles). Of course we can truncate any input
to single precision, but this can in some cases cause self-intersections or degeneracies, such that our method cannot be
applied correctly. Some of the robust methods we compare to, by contrast, more generally handle full double precision
input robustly. This must be taken into consideration when interpreting the results.

8.1. Self-union on Thingi10K dataset

The Thingi10K dataset (Zhou et al., 2016) contains 9956 models in .stl files, which are heavily biased towards 3D printing
modeling by amateurs or semi-professionals. However, not all the 9956 models are suitable for comparison. Because models
in .stl files are triangle streams rather than meshes. We merge the exact coincident vertices to reconstruct connectivity
and check the cleanness of all of the models. Among the 9956 meshes, 4509 models meet the requirements of solid. The
face numbers of these meshes generally follow a log-normal distribution with the average of 17000. Our experiments are
conducted on these solid meshes. To enable comparison, we also apply different methods on the qualified models with
CGAL (Hachenberger and Kettner, 2006), Cork (Bernstein, 2013), Carve (Sargeant, 2011), QuickCSG (Douze et al., 2015) and
LibiGl (Zhou et al., 2016) respectively. The method by Campen and Kobbelt (Campen and Kobbelt, 2010; Kobbelt, 2010)
is not included in the comparison of this section. The web service of Campen and Kobbelt (Campen and Kobbelt, 2010;
Kobbelt, 2010) does not support batch processing. Therefore, we made a few tests manually. However, roughly a half of
them failed. But for a fair comparison, the manual tests are not included.

Our approach successfully generates results in 98.8% of the tests. Although there is still a small 1.2% gap compared to
the-state-of-the-art LibiGL, our approach is still competitive in robustness. By robust, we mean that algorithms successfully
produce output for solid input. Cleanness and completeness of the output are also essential. The cleanness of resulting
meshes is evaluated by checking, open boundaries, self-intersecting (the VCG library (Cignoni, 2015)) and the total signed
incidence of every edge (Zhou et al., 2016). Solid meshes are free of self-intersections and open boundaries. Meshes with
zero total signed incidence in every edge is a strict subclass of PWN meshes. These criteria are necessary conditions for a
solid mesh. As it is shown in Fig. 19, over 80% of our results are solids, which outperform other methods except for the
state-of-the-art LibiGL. It is easy to notice relatively low rates of success for Cork and QuickCSG. The reason is that both
methods are based on general position assumption, which is violated in the case of self-union. Even after perturbation, solid
results can hardly be produced as shown in Fig. 23.

Although our approach successfully generates desired results in the test, there are still failure cases and unclean results
in our experiments. The reasons lie on the degenerate faces and close-to-degenerate faces from the inputs. The normal
vectors of degenerate faces cannot be defined and cause failure in face classification. In addition, close-to-degenerate faces
may become degenerate faces or lead to self-intersecting (see Fig. 20) after conversion to their P-reps. This is caused by
the coordinates rounding-off required in the conversion method we applied (Campen and Kobbelt, 2010). The vertexes of
the final mesh are represented as either planes or vertex coordinates. The vertexes originating from the input meshes have
exact coordinates, and the vertexes newly introduced by the intersection between meshes have only P-reps, and require
round-off when computing their coordinates. Although our approach guarantees the correct topology in the final mesh,
round-off errors may still cause topological deficiencies. This is called the vertex rounding problem. This problem can be
solved iteratively with the method by Zhou et al. (2016). However, this step is not always necessary such as in the situation
that pursues extreme efficiency.

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.17 (1-21)

B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–••• 17
Fig. 19. The result meshes of our method for the self-union of Thingi10k are cleaner than most previous methods. The Cork and QuickCSG assume the
general position and cannot handle self-union at all, so they failed to produce solids in most of the cases.

Fig. 20. After coordinates approximation (right), the “thin” triangle in the middle intersects adjacent faces and results in self-intersection on the mesh (red
triangles).

Fig. 21. The performance of tests on Thingi10k (Zhou et al., 2016) and Barki et al.’s dataset (Barki et al., 2015). We outline the median of processing time
for each method. The different histogram areas result from the different success rates. Our approach is competitive with the QuickCSG (Douze et al., 2015)
and is faster than the state-of-the-art LibiGL (Zhou et al., 2016).

In terms of the computation time, our method outperforms most of the other robust methods (see the violin histogram
in Fig. 21 top). It is worth to note that, all though our approach is 1.2% lower than the state-of-the-art LibiGL in the rate of
generating reasonable results in self-union tests, our approach is more than 2 times faster than LibiGL. Even compared with
the fastest non-exact QuickCSG, our method takes only about two times of the processing time. We profile each stage of our
method, and the results indicate the bottleneck is at intersection computation (see Fig. 24 top). The number of the triangles
is also an important factor that influence the processing time. From Fig. 22, the linear relationship between triangle number
and processing time implies the ability of our method to handle large Boolean evaluations.

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.18 (1-21)

18 B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–•••
Fig. 22. For the self-union tests on Thingi10k, there exists a linear relation between the triangle number the processing time of our approach.

Fig. 23. First row: the results of self-union of components. QuickCSG (adding perturbation of 1e−12) and Cork cannot produce valid results. CGAL and Carve
simple crashed and did not give any result for this example. Second row: In our self-union tests, QuickCSG tends to produce results with many boundary
edges (green lines), and Cork tends to produce many self-intersecting faces (red faces).

Fig. 24. Performance profile of tests on Thingi10k (Zhou et al., 2016) and Barki et al.’s dataset (Barki et al., 2015). The time percentage of different stages
are represented in different color. Each one-pixel column represents a test. All the tests are sorted by total processing time. Noted that different from
the performance profile on Thingi10k, in the experiments on the dataset by Barki et al., the bottleneck shifts from intersection computation to Octree
constructions.

8.2. Binary Boolean operations

The most common situations of Boolean evaluations in CAD are binary operation. 3D model designer and professionals
frequently refine their models by adding or subtracting one shape in their tasks. Thus, we perform comparisons of binary
Boolean evaluations to test whether our approach can be properly applied to this situation. We conduct a series of union
and intersection tests on the dataset of Barki et al. (2015). The dataset of Barki et al. contains 26 triangle meshes. All of
them are closed and manifold. We exhaustively perform union, intersection, and both asymmetric differences for all pairs,
producing 26 × (26 − 1)/2 × 4 = 1300 results.

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.19 (1-21)

B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–••• 19
Fig. 25. The resulting meshes of our method for variadic Boolean evaluations. From the left to the right is Organic, T1, T2, Sprocket, and Ring & Ball,
respectively. The performance of our method is better on cases with loosely distributed primitives (T2, Sprocket, Ring & Ball).

The configuration of our tests includes the general position assumption. This assumption enables Cork and QuickCSG to
produce correct results in more cases than during self-union tests. Note that such tests are performed only in the situation
that completeness and coplanar faces are emphasized in CSG modeling. As it is shown in Fig. 21 bottom, our approach
has significant advantages compared to other exact methods. When compared to the non-exact method QuickCSG, our
approach has slight disadvantages in speed. It is worth to note that the bottleneck shifts from intersection computation to
octree construction in this test (see Fig. 24 bottom). The shift of the bottleneck is caused by the reduction in intersections.
Compared with self-union tests, the binary Boolean evaluations generally process fewer intersections. Another point that
worth to notice is our approach have dramatic differences in performance when comparing with Carve. The differences is
caused by our localizing the Boolean evaluations within intersection areas.

8.3. Variadic Boolean operations

To evaluate the performance of our approach when evaluating large CSGs with thousands and thousands of faces, we
reproduce the experiments of Douze et al. (2015) (see Fig. 25). Some of the variadic test cases are not presented because
of the 8GB memory limitation. Since only QuickCSG and our method are variadic, comparisons with the other methods
are performed by decomposing CSG into binary Boolean operations. As shown in Table 1, our method is more efficient
than other exact methods in most cases. But our approach still has room for acceleration when compared to Quick CSG.
The reason for disadvantages in speed when facing QuickCSG is that our approach exhaustively computes all intersections
between primitives to pursue good results. Although QuickCSG has advantages in execution, it sometimes generates deficit
results even with solid inputs (please refer to supplemental materials). We add an extreme CSG with 801 primitives (the
Ring & Ball in Table 1) to evaluate the effect of our label caching acceleration. This example is large and each of its primitive
usually intersects with less than 10 other primitives. The evaluation time of Ring & Ball was 38.1 s without enabling the
label caching mechanism. With label caching acceleration, the computational time is reduced to 20 s. Therefore, by applying
label caching, the total computation time drops to only half of the original.

9. Summary

In this paper, we proposed a novel efficient and robust Boolean evaluation approach based on hybrid representation.
Our approach is variadic and able to efficiently handle large meshes while robust with solid inputs. To achieve a win–win
solution in the trade-off between efficiency and robustness, we creatively embed the P-reps and V-reps into the process
of Boolean evaluation simultaneously. The P-reps allow us to conduct exact computation with predicates only and avoid
accumulating numerical errors. The V-reps are used for coarse tests and fast neighborhood queries to reduce the amount of
slow plane-based computation. The experimental results show that our approach has performance advantages compared to
other exact methods, guaranteeing robustness under consistent inputs. One future direction for improving our approach is
to optimize the computation of the CSGs that contain a lot of meshes within a small area. In these cases, many computed
intersections will not appear as edges in the final mesh, leading to unnecessary tessellation. Optimization is needed to
alleviate this problem. Another direction of developing our method is to loosen the input limits of our approach. The inputs
of our approach are limited to solids. The input requirements of our method may be extended to Piecewise-constant integer
generalized Winding Number (PWN) meshes, that allow self-intersection. We believe that this would be an interesting and
valuable extension of our work.

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 61572316, 61671290), National High-
tech R&D Program of China (863 Program) (No. 2015AA015904), the Key Program for International S&T Cooperation Project
of China (No. 2016YFE0129500), the Science and Technology Commission of Shanghai Municipality (Nos. 16DZ0501100,
17411952600), the Interdisciplinary Program of Shanghai Jiao Tong University (No. 14JCY10), the Research Grants Council,
University Grants Committee (Nos. 28200215, CityU 11237116), City University of Hong Kong (No. 7004915), and ACIM-SCM.

JID
:C

O
M

A
ID

A
ID

:1678
/F

LA
[m

3G
;v1.235;P

rn:29/03/2018;14:52]P.20
(1-21)

20
B.Sheng

et
al./Com

puter
A

ided
G

eom
etric

D
esign•••

(••••)•••–•••

16)
Our approach†

Total Step 1 Step 2 Step 3 Step 4

2.75 0.892 1.32 0.397 0.118

14.4 0.691 2.71 8.11 2.87

5.52 0.162 1.11 3.29 0.746

0.386 0.093 0.105 0.149 0.034

20.0 1.04 3.55 8.61 6.68

y edges.
Table 1
Computation time statistics of the evaluations of large CSGs (seconds).

No. Model Face
Num.

Mesh
Num.

CGAL (Hachenberger
and Kettner, 2006)

Cork
(Bernstein, 2013)

Carve
(Sargeant, 2011)

Quick CSG
(Douze et al., 2015)

LibiGL
(Zhou et al., 20

1 Organic 219k 6 – 14.3 63.1 0.580 56.79

2 T1 80k 50 1.00k 18.5 10.4 0.388 11.2

3 T2 7k 50 2.81k – 16.0 0.804 14.5

4 Sprocket 11k 52 211 – 4.26 (0.132)∗ 3.18

5 Ring & Ball 146k 801 – – 187 (1.10) 166

† Steps 1, 2, 3, and 4 are octree construction, intersection computation, tessellation and classification, respectively.
∗ The bracket indicates that although QuickCSG gives the answer, the result meshes are full of topology deficiencies that contain thousands of boundar

JID:COMAID AID:1678 /FLA [m3G; v1.235; Prn:29/03/2018; 14:52] P.21 (1-21)

B. Sheng et al. / Computer Aided Geometric Design ••• (••••) •••–••• 21
Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .cagd .2018 .03 .021.

References

Banerjee, R.P., Rossignac, J.R., 1996. Topologically exact evaluation of polyhedra defined in CSG with loose primitives. Comput. Graph. Forum 15 (4), 205–217.
Barki, H., Guennebaud, G., Foufou, S., 2015. Exact, robust, and efficient regularized Booleans on general 3D meshes. Comput. Math. Appl. 70 (6), 1235–1254.
Bernstein, G., 2013. Cork Boolean library. https://github .com /gilbo /cork.
Bernstein, G., Fussell, D., 2009. Fast, exact, linear Booleans. Comput. Graph. Forum 28 (5), 1269–1278.
Biermann, H., Kristjansson, D., Zorin, D., 2001. Approximate Boolean operations on free-form solids. In: ACM SIGGRAPH, pp. 185–194.
Campen, M., Kobbelt, L., 2010. Exact and robust (self-) intersections for polygonal meshes. Comput. Graph. Forum 29 (2), 397–406.
Chew, L.P., 1989. Constrained Delaunay triangulations. Algorithmica 4 (1–4), 97–108.
Cignoni, P., 2015. Visualization and computer graphics library. http://vcg .isti .cnr.it /vcglib.
Douze, M., Franco, J.-S., Raffin, B., 2015. QuickCSG: Arbitrary and Faster Boolean Combinations of n Solids. PhD thesis. Inria-Research Centre Grenoble–

Rhône-Alpes; INRIA.
Fang, S., Bruderlin, B., Zhu, X., 1993. Robustness in solid modelling: a tolerance-based intuitionistic approach. Comput. Aided Des. 25 (9), 567–576.
Feito, F.R., Ogáyar, C.J., Segura, R.J., Rivero, M., 2013. Fast and accurate evaluation of regularized Boolean operations on triangulated solids. Comput. Aided

Des. 45 (3), 705–716.
Fortune, S., 1995. Polyhedral modelling with exact arithmetic. In: Proceedings of ACM Symposium on Solid Modeling and Applications, pp. 225–234.
Fortune, S., 1997. Polyhedral modelling with multiprecision integer arithmetic. Comput. Aided Des. 29 (2), 123–133.
Fortune, S., Van Wyk, C.J., 1993. Efficient exact arithmetic for computational geometry. In: Annual Symposium on Computational Geometry, pp. 163–172.
Frisken, S.F., Perry, R.N., 2002. Simple and efficient traversal methods for quadtrees and octrees. J. Graph. Tools 7 (3), 1–11.
Gottschalk, S., Lin, M.C., Manocha, D., 1996. Obbtree: a hierarchical structure for rapid interference detection. In: Proceedings of the 23rd Annual Conference

on Computer Graphics and Interactive Techniques. ACM, pp. 171–180.
Granados, M., Hachenberger, P., Hert, S., Kettner, L., Mehlhorn, K., Seel, M., 2003. Boolean operations on 3D selective Nef complexes: data structure, algo-

rithms, and implementation. In: ESA, vol. 3. Springer, pp. 654–666.
Hable, J., Rossignac, J., 2005. Blister: GPU-based rendering of Boolean combinations of free-form triangulated shapes. ACM Trans. Graph. 24 (3), 1024–1031.
Hachenberger, P., Kettner, L., 2005. Boolean operations on 3D selective Nef complexes: optimized implementation and experiments. In: Proceedings of the

2005 ACM Symposium on Solid and Physical Modeling. ACM, pp. 163–174.
Hachenberger, P., Kettner, L., 2006. 3D Boolean operations on Nef polyhedra. In: CGAL Editorial Board (Ed.), CGAL User and Reference Manual. CGAL, 3.
Hu, C.-Y., Patrikalakis, N.M., Ye, X., 1996a. Robust interval solid modelling. Part I: representations. Comput. Aided Des. 28 (10), 807–817.
Hu, C.-Y., Patrikalakis, N.M., Ye, X., 1996b. Robust interval solid modelling. Part II: boundary evaluation. Comput. Aided Des. 28 (10), 819–830.
Keyser, J., Culver, T., Foskey, M., Krishnan, S., Manocha, D., 2004. Esolid – a system for exact boundary evaluation. Comput. Aided Des. 36 (2), 175–193.
Keyser, J., Krishnan, S., Manocha, D., 1999a. Efficient and accurate B-rep generation of low degree sculptured solids using exact arithmetic. I: representations.

Comput. Aided Geom. Des. 16 (9), 841–859.
Keyser, J., Krishnan, S., Manocha, D., 1999b. Efficient and accurate B-rep generation of low degree sculptured solids using exact arithmetic. II: computation.

Comput. Aided Geom. Des. 16 (9), 861–882.
Kobbelt, L., 2010. WebBSP 0.3 Beta.
Laidlaw, D.H., Trumbore, W.B., Hughes, J.F., 1986. Constructive solid geometry for polyhedral objects. ACM SIGGRAPH Comput. Graph. 20 (4), 161–170.
Lin, Y.-H., Li, Y.-F., Zio, E., 2016. A reliability assessment framework for systems with degradation dependency by combining binary decision diagrams and

Monte Carlo simulation. IEEE Trans. Syst. Man Cybern. Syst. 46 (11), 1556–1564.
Möller, T., 1997. A fast triangle–triangle intersection test. J. Graph. Tools 2 (2), 25–30.
Naylor, B., Amanatides, J., Thibault, W., 1990. Merging BSP trees yields polyhedral set operations. ACM SIGGRAPH Comput. Graph. 24 (4), 115–124.
Ogayar, C.J., Feito, F.R., Segura, R.J., Rivero, M., 2006. GPU-based evaluation of Boolean operations on triangulated solids. In: SIACG 2006: Ibero-American

Symposium in Computer Graphics.
Ogayar, C.J., Segura, R.J., Feito, F.R., 2005. Point in solid strategies. Comput. Graph. 29 (4), 616–624.
Ogáyar-Anguita, C.J., García-Fernández, Á., Feito-Higueruela, F.R., Segura-Sánchez, R.J., 2015. Deferred boundary evaluation of complex CSG models. Adv. Eng.

Softw. 85, 51–60.
Pavić, D., Campen, M., Kobbelt, L., 2010. Hybrid Booleans. Comput. Graph. Forum 29 (1), 75–87.
Preparata, F.P., Shamos, M.I., 1985. Computational Geometry: An Introduction. Technical report. Springer-Verlag, New York, USA.
Priest, D.M., 1991. Algorithms for arbitrary precision floating point arithmetic. In: Proceedings of the IEEE Symposium on Computer Arithmetic. 1991,

pp. 132–143.
Requicha, A.A.G., 1977. Mathematical Models of Rigid Solid Objects. Technical report. University of Rochester, Rochester, NY, USA.
Requicha, A.A.G., 1980. Representations for rigid solids: theory, methods, and systems. ACM Comput. Surv. 12 (4), 437–464.
Requicha, A.A., Voelcker, H.B., 1985. Boolean operations in solid modeling: boundary evaluation and merging algorithms. Proc. IEEE 73 (1), 30–44.
Sargeant, T., 2011. Carve CSG Boolean library. https://github .com /VTREEM /Carve.
Segal, M., 1990. Using tolerances to guarantee valid polyhedral modeling results. ACM SIGGRAPH 24 (4), 105–114.
Shewchuk, J.R., 1997. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete Comput. Geom. 18 (3), 305–363.
Shewchuk, J.R., 1999. Lecture notes on geometric robustness. In: Interpolation, Conditioning, and Quality Measures. Eleventh International Meshing

Roundtable.
Smith, J.M., Dodgson, N.A., 2007. A topologically robust algorithm for Boolean operations on polyhedral shapes using approximate arithmetic. Comput. Aided

Des. 39 (2), 149–163.
Sugihara, K., Iri, M., 1989. A solid modelling system free from topological inconsistency. J. Inf. Process. 12 (4), 380–393.
Thibault, W.C., 1987. Application of binary space partitioning trees to geometric modeling and ray-tracing. J. Am. Med. Assoc. 184.
Thibault, W.C., Naylor, B.F., 1987. Set operations on polyhedra using binary space partitioning trees. ACM SIGGRAPH Comput. Graph. 21 (4), 153–162.
Tilove, R., Requicha, A.A., 1980. Closure of Boolean operations on geometric entities. Comput. Aided Des. 12 (5), 219–220.
Updegrove, A., Wilson, N.M., Shadden, S.C., 2016. Boolean and smoothing of discrete polygonal surfaces. Adv. Eng. Softw. 95, 16–27.
Varadhan, G., Krishnan, S., Sriram, T., Manocha, D., 2004. Topology preserving surface extraction using adaptive subdivision. In: Proceedings of the 2004

Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. ACM, pp. 235–244.
Wang, C.C., 2011. Approximate Boolean operations on large polyhedral solids with partial mesh reconstruction. IEEE Trans. Vis. Comput. Graph. 17 (6),

836–849.
Zhao, H., Wang, C.C., Chen, Y., Jin, X., 2011. Parallel and efficient Boolean on polygonal solids. Vis. Comput. 27 (6), 507–517.
Zhou, Q., Grinspun, E., Zorin, D., Jacobson, A., 2016. Mesh arrangements for solid geometry. ACM Trans. Graph. 35 (4), 39.

https://doi.org/10.1016/j.cagd.2018.03.021
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib62616E65726A656531393936746F706F6C6F676963616C6C79s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6261726B69323031356578616374s1
https://github.com/gilbo/cork
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6265726E737465696E3230303966617374s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib626965726D616E6E32303031617070726F78696D617465s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib63616D70656E323031306578616374s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6368657731393839636F6E73747261696E6564s1
http://vcg.isti.cnr.it/vcglib
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib646F757A6532303135717569636B637367s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib646F757A6532303135717569636B637367s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib66616E6731393933726F627573746E657373s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib666569746F3230313366617374s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib666569746F3230313366617374s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib666F7274756E6531393935706F6C7968656472616Cs1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib666F7274756E6531393937706F6C7968656472616Cs1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib666F7274756E6531393933656666696369656E74s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib667269736B656E3230303273696D706C65s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib676F7474736368616C6B313939366F626274726565s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib676F7474736368616C6B313939366F626274726565s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6772616E61646F7332303033626F6F6C65616Es1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6772616E61646F7332303033626F6F6C65616Es1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6861626C6532303035626C6973746572s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib68616368656E62657267657232303035626F6F6C65616Es1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib68616368656E62657267657232303035626F6F6C65616Es1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib68616368656E626572676572323030363364s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib687531393936726F6275737431s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib687531393936726F6275737432s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6B65797365723230303465736F6C6964s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib4B65797365723A313939393A4541423A3333343934382E333334393439s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib4B65797365723A313939393A4541423A3333343934382E333334393439s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib4B455953455231393939383631s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib4B455953455231393939383631s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6C6169646C617731393836636F6E737472756374697665s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6C696E3230313672656C696162696C697479s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6C696E3230313672656C696162696C697479s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6D6F6C6C65723139393766617374s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6E61796C6F72313939306D657267696E67s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6F676179617232303036677075s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6F676179617232303036677075s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6F676179617232303035706F696E74s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6F6761796172323031356465666572726564s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib6F6761796172323031356465666572726564s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib706176696332303130687962726964s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib70726570617261746131393835636F6D7075746174696F6E616Cs1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib50726965737431393931416C676F726974686D73s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib50726965737431393931416C676F726974686D73s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib7265717569636861313937376D617468656D61746963616Cs1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib726571756963686131393830726570726573656E746174696F6E73s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib726571756963686131393835626F6F6C65616Es1
https://github.com/VTREEM/Carve
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib736567616C313939307573696E67s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib736865776368756B313939376164617074697665s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib736865776368756B313939396C656374757265s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib736865776368756B313939396C656374757265s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib736D6974683230303761s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib736D6974683230303761s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib737567696861726131393839736F6C6964s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib5468696261756C74313938374170706C69636174696F6Es1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib7468696261756C7431393837736574s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib74696C6F766531393830636C6F73757265s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib7570646567726F766532303136626F6F6C65616Es1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib766172616468616E32303034746F706F6C6F6779s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib766172616468616E32303034746F706F6C6F6779s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib77616E6732303131617070726F78696D617465s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib77616E6732303131617070726F78696D617465s1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib7A68616F32303131706172616C6C656Cs1
http://refhub.elsevier.com/S0167-8396(18)30035-9/bib7A686F75323031366D657368s1

	Accelerated robust Boolean operations based on hybrid representations
	1 Introduction
	2 Related work
	3 Preliminary
	3.1 Boolean evaluation
	3.2 Plane-based representation
	3.3 Combining V-reps and P-reps

	4 Overview: Boolean evaluation based on hybrid representation
	5 Intersection computation
	5.1 Space division
	5.2 Plane-based intersection test
	5.2.1 Plane-based intersection representation
	5.2.2 Plane-based intersection detection

	5.3 Handling degenerate situations

	6 Deferred tessellation
	6.1 Intersection reﬁnement
	6.2 Tessellation by tess-graph
	6.3 Tess-graph with multiple components

	7 Face classiﬁcation
	7.1 Label computation and propagation
	7.2 Seed label generation
	7.3 Acceleration by caching

	8 Experimental results
	8.1 Self-union on Thingi10K dataset
	8.2 Binary Boolean operations
	8.3 Variadic Boolean operations

	9 Summary
	Acknowledgements
	Appendix A Supplementary material
	References

