
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 1

SAniHead: Sketching Animal-like 3D Character
Heads Using a View-surface Collaborative Mesh

Generative Network
Dong Du, Xiaoguang Han, Member, IEEE, Hongbo Fu, Feiyang Wu, Yizhou Yu, Fellow, IEEE,

Shuguang Cui, Fellow, IEEE, Ligang Liu, Member, IEEE

Abstract—In the game and film industries, modeling 3D heads plays a very important role in designing characters. Although human
head modeling has been researched for a long time, few works have focused on animal-like heads, which are of more diverse shapes
and richer geometric details. In this work, we present SAniHead, an interactive system for creating animal-like heads with a mesh re-
presentation from dual-view sketches. Our core technical contribution is a view-surface collaborative mesh generative network. Initial-
ly, a Graph Convolutional Neural Network(GCNN) is trained to learn the deformation of a template mesh to fit the shape of sketches,
giving rise to a coarse model. It is then projected into vertex maps where image-to-image translation networks are performed for detail
inference. After back-projecting the inferred details onto the meshed surface, a new GCNN is trained for further detail refinement. The
modules of view-based detail inference and surface-based detail refinement are conducted in an alternating cascaded fashion, collab-
oratively improving the model. A refinement sketching interface is also implemented to support direct mesh manipulation. Experimental
results show the superiority of our approach and the usability of our interactive system. Our work also contributes a 3D animal head
dataset with corresponding line drawings.

Index Terms—Sketch-based 3D Modeling, Graph Convolutional Neural Network, Animal-like Character Heads.

F

1 INTRODUCTION

HOW to quickly generate 3D models remains a widely
concerned problem in the field of computer graph-

ics. While there exist professional 3D modeling software
packages, such as Maya and ZBrush, they are designed for
skillful users. In contrast, due to the simplicity of sketch-
ing, sketch-based interfaces for 3D modeling are potentially
more accessible by users, even for those with little training
in drawing. However, inferring 3D geometry from sparse
sketches is a very challenging task due to inherent ambigu-
ities. Traditional approaches [1], [2] allow users to draw or
manipulate curve handles (e.g., contours and feature lines)
of the target shape and reconstruct a 3D model by using
heuristic geometric constraints like continuity. This usually
requires a heavy amount of user interaction to produce a
complex model.

Recently, deep learning techniques have been utilized in
building the mapping from 2D line drawings to 3D shapes,
greatly improving the efficiency of sketch-based modeling.
For example, with the help of advanced volume-based
shape decoders (which are built upon 3D Convolutional
Neural Networks (CNNs)), the system proposed in [3] can
instantly convert users’ rough sketches into 3D shapes.
However, the high computational cost of 3D convolutions

• D. Du and L. Liu are with the University of Science and Technology of
China. X. Han, F. Wu, and S. Cui are with the Chinese University of
Hong Kong, Shenzhen, and Shenzhen Research Institute of Big Data. H.
Fu is with the City University of Hong Kong. Y. Yu is with the University
of Hong Kong.

• This work was done during D. Du visiting Shenzhen Research Institute
of Big Data and the Chinese University of Hong Kong, Shenzhen.

• Corresponding author: X. Han (hanxiaoguang@cuhk.edu.cn).

hampers it from producing high-resolution models. Turn-
ing the problem to be a task of generating normal/depth
images from multi-view sketches can improve the quality
of synthesized models, but existing systems in this track
either tend to output results with inconspicuous details [4],
[5] or require careful drawings in multiple views [6]. These
challenges become easier to tackle if we focus on the shapes
of specific categories, e.g., urban models [7] and human
faces [8], which can be represented in parametric spaces. A
deep regression model can thus be exploited for generating
quality models.

In this paper, we aim to design an interactive modeling
system for a new shape category - animal-like character
heads. This type of model is very popular in character
modeling. However, different from human faces, the va-
riety and complexity of animal heads make it difficult to
represent them in a low-dimensional parametric space. This
greatly prevents deep regression models from getting accu-
rate modeling (Please refer to Sec. 6.2.2 and Fig. 16). Thanks
to Pixel2Mesh [9], the shape space can also be implicitly
modeled by learning the deformation from a template mesh.
More specifically, given an input sketch and a template
mesh, it first extracts features from the sketch image and
then projects them onto the vertices of the mesh, which are
fed into a Graph Convolutional Neural Network (GCNN) to
learn the deformation. The Chamfer distance (CD) is used as
the primary loss to minimize the closeness of the deformed
mesh with the ground truth, forming a supervised learning
mechanism. Unfortunately, in our setting this method is
difficult to generate fine details, making synthesized results
still far from satisfactory. This is due to two issues: 1) graph
convolution, as an approximated convolution operation de-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 2

Fig. 1: We present SAniHead, an interactive sketching system for amateur users to easily model animal-like character heads.
For each example, our novel view-surface collaborative mesh generative network turns hand-drawn sketches in dual views
(Left) into a 3D model (Middle) in real time for further editing (Right). On average, the modeling process for each example
takes around 8 minutes, including 3 minutes for sketching and 5 minutes for post-manipulation.

fined over a discrete surface representation (i.e., mesh), is
hard to model the features of high-frequency signals; 2)
since the used CD loss defines the measurement on sparse
vertices, it tends to prevent generating geometric details,
which contribute only a small portion to the loss value.

As witnessed, recent image decoders based on CNNs
can easily infer high-frequency details [10], [11], [12], [13].
Inspired by this, to address the above-mentioned issues, our
key idea is to generate a coarse shape using surface-based
decoders and synthesize geometric details via image-based
decoders, as illustrated in Fig. 2. Specifically, our approach
firstly exploits a modified method of Pixel2Mesh [9] to
convert input sketches depicting a target shape in one or
two views 1 to a coarse mesh. To synthesize the details, we
project the coordinate information of its vertices into the
front, left-side, and right-side views, forming three images.
Commonly used image-to-image translation frameworks,
such as pix2pix [14], can then be utilized to infer pixel-
wise displacement maps of vertices from the images. Due
to possibly inconsistent inference across views, directly pro-
jecting the generated displacements back onto the surface
would lead to artifacts on the deformed mesh. We thus
propose a novel GCNN and apply it on the surface to
reduce the artifacts and refine the geometry. The presented
view-based detail synthesis and surface-based detail refinement
can also be conducted in an alternating manner to further
improve the quality of synthesized models. Our whole net-
work, called as view-surface collaborative mesh generative
network, performs in an end-to-end fashion, where the view
and surface domains collaboratively help generating the
final mesh. Both qualitative and quantitative results show
the effectiveness of the proposed method and its superiority
over all existing approaches for shape inference.

Finally, we design a two-stage sketching interface for
real-time shape modeling. As illustrated in Fig. 1, in the
first stage, users can sketch a target shape from one or two
views. Our system instantly generates and updates a 3D
model for the input sketch(es). The second stage provides a
set of tools, such as handle-based deformation and brush-
based sculpting, for directly manipulating the surface. User
evaluations show that our system is easy-to-use, especially

1. Our system provides two canvases, front view and side view. Users
can draw on either or both. On the canvas of the side view, the user can
only draw under one of the left-side or the right-side view, and the
sketch on the other side is directly obtained via flipping the drawn one.

for novices.
In summary, the main contributions of this work are:

• A novel easy-to-use sketching interface for modeling
animal-like 3D character heads. Our system allows
users to draw on canvases from scratch to obtain
quality synthesized results with instant feedback.
It also provides plentiful tools to post-manipulate
generated surfaces.

• A novel view-surface collaborative mesh generative
network that can effectively recover a 3D mesh from
sketches. The proposed algorithm well overcomes
the challenges with all existing methods to generate
geometric details.

• The first 3D animal head model dataset, containing
220 well-collected models in 19 animal categories.
The number of further augmented models is 16,800.
Each model is also associated with line-drawing
renderings in orthographic views, and 1,200 models
even with hand-drawn sketches. We will make the
dataset as well as the interactive system public to the
research community.

2 RELATED WORK

Sketch-based Shape Design. How to easily create 3D
shapes via a sketching interface is a long-standing research
problem in the field of computer graphics [15], [16]. One
of the seminal works is [17], which presented an approach
for using curves to control 3D surface deformation. Igarashi
et al. [1] proposed an interactive sketching system that
automatically generates a 3D shape from 2D user-drawn
silhouettes in real-time. A large body of follow-up works [2],
[18], [19], [20], [21], [22] were then conducted. The strokes
drawn by users in these systems are adopted to directly
constrain the positions for certain vertices of a target shape.
The recent works [23], [24], [25], [26] attempted to dig out
more geometric information from input 2D sketches by
studying the relationship between cross lines and surface
normal. Since input strokes only provide sparse constraints
on certain vertices, geometric assumptions like surface
smoothness are often utilized for surface recovery in other
regions. However, since no strong geometric assumptions
can be made for animal-style models, these works tend to
fail in our setting.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 3

Pi
[e

l2
M

es
h

M
es

h
R

en
de

re
r

D
et

ai
ls

 S
\s

th
es

is

D
et

ai
ls

R
ef

in
em

en
t

(a)

(b)

(c) (d)

(e) (f)

iteration

(J)

projectVGG-Net projectconcatenate

Initial Model Generation

VieZ-surface Alternating
Mesh Enhancing

VDS-Net SDR-Net

Fig. 2: The proposed view-surface collaborative mesh generative network, which can be trained in an end-to-end fashion.
(a) Given dual-view sketches (Sf , Ss) and a pre-defined sphere template mesh M0. (b) The stage of initial mesh generation
produces a coarse mesh M1, using a modified Pixel2Mesh. (c) A differentiable mesh renderer is then used to render M1

into three vertex maps in the front, left and right views (denoted as I1f , I1l , and I1r , respectively). (d) An image-to-image
translation network is then applied on the three images, generating three vertex displacement maps (D1

f , D1
l , and D1

r).

(e) The displacements are then unprojected onto the surface, resulting in a new mesh M̃1, which contains more geometric
details. (f) A GCNN is further applied on M̃1 for detail refinement to produce a mesh M2. (g) After several (2 in this
example) iterations of applying VDS-Net and SDR-Net, we obtain the final mesh M3. Note that, the input sketches are also
used to provide information for both VDS-Net and SDR-Net. See Section 3 for more details. Our network is also applicable
for single-view inputs.

Sketch-based shape retrieval [27], [28] uses an input
sketch as a query to search for geometrically the most
similar shape from a predefined database of 3D models.
However, the results are usually far from input sketches
due to the limited capacity of the database. For the ob-
jects that can be well-represented by the part assembly,
like man-made models, several works [29], [30], [31], [32],
[33] proposed to utilize strokes to retrieve appropriate part
candidates for subsequent assembly. Compared to sketch-
based part assembly, our approach is superior in three folds:
1) our system allows sketching in an arbitrary order with no
requirement on the part information, thus greatly improving
the efficiency of user interaction; 2) our system does not
require geometry composition between parts, which often
causes artifacts; 3) a database of pre-segmented 3D models,
which requires a heavy amount of labor for manual segmen-
tation, is not needed in our system.

Image-based Shape Decoders. Recently a lot of methods
attempted to leverage the powerful learning abilities of deep
neural networks for decoding 3D geometry from 2D images.
Some works [34], [35], [36] took a volumetric representation
of CNNs for the generation of 3D shapes. However, because
of the high computational cost, such methods are hard
to produce high-resolution outputs, though this issue has
been alleviated by Octree-based CNNs [37] and its adap-
tive version [38]. Point cloud, as one of the most popular
geometry representations, has been utilized in [39], [40] as
the output formula for shape recovery by training a deep
regression model. There also exist some studies [41], [42] on
reconstructing 3D shape by synthesizing multi-view depth
maps or a single spherical map. However, it is still difficult
to produce a clean mesh with all the above-mentioned
approaches. Some recent methods [9], [43], [44] attempted to
directly learn a 3D shape with a mesh representation as the
output. They all take extra template meshes as inputs and
then focus on learning mesh deformations. Since the shape
of animal heads is homeomorphic to the ball, Pixel2Mesh [9]
is very suitable for modeling the shape space by learning

deformation from a sphere mesh. Unfortunately, it is hard to
generate geometric details. Our work tackles this challenge
by presenting a novel view-surface collaborative mesh de-
coder, which is capable to model not only diverse shapes
but also fine details.

Deep Sketch-based Modeling. Sketch-based modeling
often requires semantic interpretation of freehand sketches.
The technique of CNNs is suitable for this task due to
its powerful ability of high-level feature extraction. In this
context, Nishida et al. [7] trained a CNN-based regression
model to map input sketches to the parameters of pro-
cedural modeling for buildings. They also developed an
interactive system for real-time modeling. Huang et al. [45]
proposed a similar network to infer procedural modeling
of man-made objects. By incorporating a deep regression
model to reason the parameters of 3D face morphable model
from sketch images, a user interface for 3D face modeling is
developed in [8]. However, these methods only work for
the shape categories which can be formulated using a para-
metric representation. To deal with more general shapes, the
work [3] learned an end-to-end network to take a sketch as
input and output its corresponding 3D shapes in a volume-
based representation. Due to both the computational com-
plexity and the high memory cost, their results are usually
of low resolution. An unsupervised learning strategy was
also exploited in [46] for the same task. Most recently, by
using the efficient image-to-image translation methods, Lun
et al. [4] and Li et al. [6] proposed to first transform input
sketches into depth/normal maps and then to fuse them
to form completed 3D models. The difference is [6] only
predicts depth maps from the sketched views, while [4]
produces 12 views given one or two input sketches. To the
best of our knowledge, our work is the first to implement an
end-to-end sketch-to-mesh translation network with deep
learning to support interactive mesh modeling. This choice
is made for two reasons. First, due to their shape diversity,
it is not easy to build a low-dimensional parametric space
for animal-like heads, making a deep regression model hard

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 4

to result in the parameters for accurate modeling. Second, a
large number of view-based depth maps are usually needed
to represent the models we are dealing with, causing a
heavy amount of user interaction or post-processing with
the existing approaches.

VGG-Net

D
ef

or
m

er

U
np

oo
lin

g

D
ef

or
m

er

U
np

oo
lin

g

D
ef

or
m

er

v: 312 v: 1242 v: 4962

feature maps
conv2-3

conv3-3
conv4-3
conv5-3

Fig. 3: The proposed modified Pixel2Mesh architecture,
which is used in our first stage for generating a coarse mesh
from input sketches.

3 MESH INFERENCE FROM SKETCHES

Before describing the design of our sketching interface
(Section 5), we introduce our algorithm for sketch-based
mesh inference, which directly converts sketch images in
one or two views to a 3D shape in mesh representation. Note
that although our approach theoretically supports inputting
sketches in multiple arbitrary views, we set the canvases in
only the front view and (left or right) side view because:
1) they are generally sufficient for users to provide the
desired shape information; 2) this setting also better matches
users’ drawing habits. As illustrated in Fig. 2, the proposed
architecture consists of two stages: the method of Pixel2Mesh
is firstly utilized to convert input sketches into a coarse
mesh as initialization; geometric details are then refined
with a proposed view-surface alternating mesh enhancing
mechanism. The details will be explained in the following
subsections.

3.1 Initial Mesh Generation

In the first stage, the algorithm of Pixel2Mesh [9] is borrowed
to covert input sketch images into a coarse mesh. We first
give a brief review of Pixel2Mesh and then explain how to
adapt it to our settings.

Pixel2Mesh. Taking an image I of an object O and a
template mesh M0 (it can be a sphere or an ellipsoid)
as input, Pixel2Mesh tries to learn a mechanism for de-
forming M0 to fit the shape of O. To do so, a coarse-
to-fine pipeline is designed, containing three deformation
blocks with two unpooling layers intersected between them,
as illustrated in Fig. 3. Each deformation block treats the
mesh as a graph and applies a GCNN onto it to learn
vertex-wise displacements. Through subdivision operations,
the unpooling blocks progressively increase the resolution

of the deformable mesh. This coarse-to-fine mechanism
greatly improves the ability to model complicated shapes.
In parallel, a VGG-16 network is used for feature extraction
from I . In each deformation block, vertices on the mesh
are orthogonally projected into the extracted feature maps
of the VGG-16 network in four specific layers (‘conv2-
3’,‘conv3-3’,‘conv4-3’,‘conv5-3’), to capture the target shape
information of O. We recommend the readers to refer to [9]
for the detailed architecture setting. Note that, our model
takes a sphere mesh with 312 vertices as input and outputs
a mesh with 4,962 vertices, which is much denser than the
version in [9] where the output mesh contains 2,466 vertices.
This is because the shape of animal heads usually contains
more geometric details than man-made objects, which are
the focus of [9].

Dual-view Inputs. Single-view input is usually not
enough to determine a 3D shape, while it is hard to draw
consistently for multiple views especially for novices. We
thus take a trade-off by using dual-views, say the front view
and one side (left or right) view. Since the two views are
orthogonal, the inconsistency will produce minor influences
on the mesh inference. When a user inputs both a front-view
sketch Sf and a side-view sketch Ss (either left-side view or
right-side view, please refer to Section 5), we concatenate
Sf and Ss to be a 2-channel image I0 and directly feed it
into the network of Pixel2Mesh. Fig. 3 illustrates the detailed
architecture. It is worth noting that we have also tried an
alternative way to deal with dual-view inputs: two VGG-
16 networks (with weights sharing) were used to extract
features from Sf and Ss independently, which were then
concatenated before projecting onto the mesh. However, we
found this alternative solution did not provide better results
through experimental comparisons.

3.2 View-surface Alternating Mesh Enhancing

Denote the generated mesh from the stage of initial mesh
generation as M1. We found that Pixel2Mesh usually fails
to infer geometric details. To address this issue, we try to
leverage the powerful generation capability of CNNs in
the image domain, and propose a view-surface alternating
mesh enhancing framework, which consists of two cascaded
modules, namely, a view-based detail synthesis network
(VDS-Net for short), and a surface-based detail refinement
network (SDR-Net for short).

3.2.1 View-based Detail Synthesis
As shown in Fig. 2, VDS-Net firstly uses a mesh renderer
to project M1 into three images from the front, left-side,
and right-side perspectives, named as I1f , I1l , and I1r , on
which the high-frequency details are inferred via image-
based generative networks.

Vertex-map Rendering. We first introduce how the mesh
renderer generates vertex maps to form the images. Similar
to the definition of a normal map, a vertex map encodes
the coordinates of the visible mesh vertices into a color-
ful image. Sepcifically, given a mesh M = (V,E), where
V = {vi, i = 1, ..., N} represents the vertex set and E indi-
cates the edge set, a vertex map from a viewpoint c, denoted
as Ic, is calculated: all visible faces are firstly projected onto
a plane, forming a 2D mesh; for each vertex p on it (we

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 5

assume it is the projection of a 3D vertex v = (x, y, z)),
we assign an RGB value (φ(x), φ(y), φ(z)) × 255 (φ is an
operator of normalization, specifically taking x as an exam-
ple, φ(x) = (x− xmin)/(xmax − xmin)) to this location; the
colors of other pixels inside a face are finally interpolated
from the vertices of the associated face using the barycentric
coordinates. Note that there exist other ways to represent
a mesh in a viewpoint, such as depth maps and normal
maps. We select a vertex-map representation because of
its simplicity and capability to support end-to-end training
(please refer to Section 3.3 for the details about why the
vertex-map representation makes this mesh renderer easily
differentiable).

Displacement-map Inference. We then discuss how to
synthesize details over the three images. Our work solves
the problem of detail synthesis on M1 by learning desired
movements for its vertices. For each vertex vi, we need
to infer a displacement vector di. Such displacements de-
fined over the surface can also be represented by three 2D
color-maps (along the x-axis, y-axis, and z-axis), named as
displacement-maps, which can be created in a similar way
to the method for rendering vertex maps. We denote the
resulted color-map images from the front, left-side, and
right-side views as D1

f , D1
l , and D1

r , respectively. In this
manner, the problem becomes how to infer D1

p from I1p ,
where p stands for one of the three viewpoints (i.e., front,
left-side, and right-side). We adopt the commonly used
pix2pix model [14] for this image-to-image translation prob-
lem: a U-Net is used for image translation and a conditional
discriminator is adopted to better generate sharp details.
Note that, the same pix2pix model is utilized for all different
views.

Sketch Assistance. To provide sufficient information of
local details, for each viewpoint p ∈ {f, l, r}, the corre-
sponding sketch Sp is also integrated into the translation
procedure from I1p to D1

p. In particular, we first use a
sequence of conv+pool layers to convert Sp to a feature map,
and then concatenate it to the bottleneck feature of the U-
Net, assisting for detail decoding. It is worth mentioning
that besides a sketch in the front view, our system only
requires either a sketch in the left-side view sl or a sketch in
the right-side view sr. To support sketch assistance for all
views, we simply treat Sl (Sr) the mirror image of Sr (Sl),
which is also helpful to generate a symmetric shape. Note
that we have another option to use only 2 views for detail
enhancement: for example, we can firstly generate only D1

f

and D1
l , and then obtain D1

r as the mirror of D1
l . However,

based on our experiments, directly applying such D1
r to M1

tends to produce severe artifacts. This is mainly because of
the misalignment between the mirror of D1

l and the right-
side ofM1, since Pixel2Mesh usually generates asymmetrical
outputs. We also extend our system for the single-view
sketch input by synthesizing the line drawings of the mesh
generated by single-view Pixel2Mesh module for unavailable
views with the method of Suggestive Contours [47], then
fetch them to VDS-Net.

3.2.2 Surface-based Detail Refinement
After obtaining the displacement maps D1

f , D1
l , and D1

r ,
we back-project them onto M1 to guide the movement of
its vertices for detail generation on the surface. This step

gives rise to a new mesh M̃1 with details enhanced. Due
to the possible projection errors and the inconsistency of
the synthesized details in different views, M̃1 tends to be
not very smooth. A GCNN defined on the mesh is further
trained to eliminate such noise and also help to refine the
generated geometric details.

Displacement Unprojection. We perform the unpro-
jection by projecting each vertex onto the 3 displacement
maps to obtain the corresponding displacement vectors.
Some vertices might be seen from more than one view,
resulting in more than one displacement vector. We simply
average them to form the final movements. Specifically, for
each vertex v1 of M1, we project it to D1

f , D1
l , D1

r and
respectively get the corresponding color values, which are
directly converted to 3D displacement vectors d1

f , d1
l , d1

r . If
the projected point in view p lies outside the valid region of
D1

p, we set cp = 0 (cp is a binary variable that indicates if p
lies inside the valid region) and reset d1

p = 0; otherwise,
we set cp = 1. Then, we add the average displacement
vector d1 = (d1

f + d1
l + d1

r)/(cf + cl + cr) to v1, obtaining

ṽ1 = v1 + d1. This thus forms M̃1.
GCNN-based Refinement. We consider M̃1 as a graph

and train a GCNN. It takes vertex coordinates of M̃1 as
input signals over the graph nodes and uses 12 graph-conv
layers to extract vertex-wise features, which are followed
by a regression layer and converted to 3D vertex-wise
displacements. By adding the generated displacements onto
M̃1 , we obtain a smoother mesh M2. Using the ground-
truth models as the supervision to train this GCNN not only
reduces the noise but also enhances details.

Sketch Assistance. To take full advantage of the input
sketches, the extracted VGG-features of them are also inte-
grated into the GCNN-based refinement network, further
providing desired detail information. To achieve this goal,
we directly project the feature map of ‘conv5-3’ to the second
graph-conv layer.

3.2.3 Cascaded Mechanism for Further Enhancement
Note that our view-based and surface-based detail synthe-
sis methods are both based on the input, this mechanism
supports incremental learning naturally. Inspired by the
algorithm of [48], we propose two cascaded refinement
strategies to further improve the results.

Cascaded Displacement Inference. The first strategy
adopted in the task is translating I1p to D1

p. We modify
the generative network of the pix2pix model to perform
in a cascaded manner: the output of the U-Net is directly
concatenated to I1p , followed by another U-Net to generate
D1

p. This procedure is conducted repeatedly. In our imple-
mentation, we use two cascaded U-Nets since it performs
better than a single U-Net and obtains similar results to
three U-Nets, based on our experiments.

Cascaded Detail Inference and Refinement. We con-
nect the modules of VDS-Net and SDR-Net in a cascaded
way and perform them repeatedly. In particular, a VDS-Net
converts the initially generated M1 to M̃1, which is then
mapped to M2 by a SDR-Net. After that, another VDS-
Net can be utilized to translate M2 to M̃2, which is used
as input to another SDR-Net to get M3. Our experiments
show that adopting two iterations strikes a good balance

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 6

Fig. 4: Some sampled models in five sampled animal cate-
gories, in our dataset, are shown.

between quality and efficiency. M3 is the final output of our
implementation.

3.3 End-to-End Training
Our framework is finally formed as: Pixel2Mesh → VDS-
Net→ SDR-Net→ VDS-Net→ SDR-Net. In this section, we
discuss how to train the entire network.

Differentiable Renderer. The key process to guarantee
end-to-end training is to design a differentiable layer to
project a triangle mesh M to be a vertex-map I , establish-
ing the correspondence between M and I . Then, the loss
back-propagation is automatically accomplished using the
automatic differentiation library, e.g., TensorFlow. In our
setting, the value of a pixel p ∈ I is the coordinate which
can be calculated by a linear combination of the vertices
of the corresponding face of M . Therefore, the loss can
be easily back-propagated passing through this projection
layer, given the known projection matrix (one of the front,
left-side, or right-side).

Training Procedure. In Section 4, we will describe the
details of how to prepare a dataset of meshes for training
and a method to generate input sketches Sf and Ss (Sl

and Sr are randomly synthesized when generating training
samples) for each mesh Mg . Our whole network takes input
sketches and tries to deform a template mesh to fit Mg . The
training is conducted in the following steps:

1) We first train Pixel2Mesh separately, which takes Sf

and Ss as input and outputs a coarse mesh M1. The loss
functions are the same as [9], including Chamfer distance
(CD) loss measuring the closeness of the output mesh to the
ground-truth mesh Mg , normal loss ensuring local orienta-
tion consistency between the output and the ground-truth,
Laplacian loss encouraging the smoothness of the output,
and finally, edge length loss penalizing the flying vertices.

2) The first VDS-Net, which takes I1p as input and outputs
D1

p, is also trained separately. We use the L1 loss to measure
the closeness of D1

p with the ground-truth displacement
map Dg

p , and cGAN [14] loss to make the output map as

sharp as possible. To support the training, we generate the
paired data (I1p , D

g
p) as follows: For each training sample,

the trained Pixel2Mesh is first applied to generate M1,
which is then directly rendered into three views, produc-
ing I1p , p ∈ {f, l, r}. After that, the popular ICP strategy
is used to register M1 to Mg . This builds a vertex-wise
correspondence map, with which each vertex on M1 can
easily get a 3D displacement vector to reach Mg . Dg

p can
thus be projected from the displacement field.

3) For each training sample, we use the trained VDS-Net
to convert M1 to be M̃1. Then, the paired data (M̃1,Mg)
are used to train SDR-Net and obtain M2, where all of the
four loss functions in Step 1 are used.

4) Finally, we concatenate all sub-networks in a complete
one and fine-tune them in an end-to-end manner. Before
fine-tuning, we first copy the parameters of Pixel2Mesh, the
first VDS-Net and SDR-Net from their pre-trained models,
and directly set the parameters of the second VDS-Net and
SDR-Net as the same as those of the first VDS-Net and SDR-
Net, respectively.

4 DATASET CONSTRUCTION

To support the training of our network, we built a dataset of
3D animal heads and their corresponding 2D sketches. The
procedure is described in the following subsections.

4.1 3D Model Collection

We first collected 3D animal models, not restricted to heads,
from the Internet. Due to the limited categories of the pub-
licly available animal models, we also recruited two artists
to design uncommon animal heads. Finally, we obtained 220
models in 19 categories, including cat, dog, rabbit, camel,
etc.

Mesh Reconstruction. The models collected from the
Internet are usually of non-manifold structures. Moreover,
they often involve undesired internal structures. To obtain
the shell of a mesh, we process it in four steps: 1) we
render the model into multi-view depth maps (20 views
used); 2) the depth maps are fused to form a point cloud;
3) a mesh is reconstructed using the method of Poisson
mesh reconstruction [49]; 4) a skilled artist is recruited to
clean the reconstructed model by removing artifacts and
enhancing feature regions, such as eyes, mouths, noses, and
ears. Finally, we obtain a closed manifold mesh.

Head Cut and Alignment. For each model with a full-
body, we cut its head manually along the neck and complete
it to be a closed mesh. After that, all meshes are further
aligned manually to have a consistent scale and orientation.
Fig. 4 shows several models in sampled categories (all the
category names are listed in the supplemental material,
where some sampled models for each category are also
shown).

4.2 Mesh Augmentation

To improve the generalization ability of our method, we
increase the models’ diversity for data augmentation using
the following three approaches.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 7

(a) (b) (e)(d)(c) (f)

Fig. 5: Mesh augmentation. (a) two sampled meshes; (b)(c)
after surface-domain deformations with two random Lapla-
cian scaling; (d)(e) two further random space-domain de-
formations applied to the meshes in (b)(c). (f) shows two
resulted models by first interpolating the two models in
(a) randomly and then perform a random surface-domain
deformation followed by a random space-domain deforma-
tion.

(a) (b) (c)

Fig. 6: Given a model, we collect its sketches by (a) Canny
edge detection; (b) suggestive contour rendering; and (c)
human drawing.

Surface-domain Deformation. Inspired by the method
used in [8], we firstly perform surface-domain deforma-
tion using mesh exaggeration techniques as follows. The
Laplacian of the i-th vertex vi on a mesh can be defined
as Lapi =

∑
j∈N(i) wij ||vi − vj ||22, where wij follows the

well-known cotangent weight formula [50]. Thus, the exag-
geration can be carried out randomly by applying a random
scaling value on all Lapi and obtaining the scaled Lapla-
cians, from which the deformed mesh can be recovered
by solving a sparse linear equation system. We perform 7
times of random deformation per model, then extend the
220 models to 1,760 ones.

Space-domain Deformation. To further increase the
model diversity of the dataset, for each mesh from the 1,760
ones, we perform 4 extra random deformations in the space
domain by using the t-FFD approach [51]. 8,800 meshes are
finally obtained. The results after surface-domain and space-
domain deformations on two sampled meshes are shown in
Fig. 5(b-e).

Model Interpolation. As seen, our collected models
are of extremely diverse shapes, making the established
space sparse and hyper non-uniform. This greatly limits the
generalization capability of the trained model. To address
this issue, we further augment our dataset by interpolating
the models. This is conducted in three steps: 1) for each
model from the 220 animal heads, we manually annotate 7
landmark positions: left and right ear tips, left and right eye
centers, nose tip, upper and lower lip mid-point (please refer
to the supplemental material for the illustration); 2) based
on the labeled landmarks, the algorithm of [52] is exploited
to build dense correspondences for all the 220 models; 3)

8,000 paired models are then randomly selected. For each
pair, one model is created by firstly applying a random
interpolation and then performing a random surface-based
deformation followed by a space-domain deformation. Two
sampled interpolated models are shown in Fig. 5(f). Finally,
16,800 models are obtained.

4.3 Sketch Collection
For each mesh in the dataset, we synthesize its sketches on
both front and side views (including left-side and right-side)
for building sketch-mesh pairs.

Sketch Synthesis. Given a mesh, we firstly render its line
drawings under specific viewpoints using the method of
Suggestive Contours [47]. To increase the diversity, another
rendering technique is also adopted: the shading map is
firstly rendered and then Canny edges [53] are extracted
as the sketches.

Hand-drawn Sketches. We also recruited 3 artists to
draw the sketches for 1,200 randomly selected meshes in
an image-tracing setup. For each model, both front-view
and side-view (left or right is randomly chosen by the
artist) drawings were created. It is worth mentioning that,
as these hand-drawn sketches in different views are usually
inconsistent. Training with them can improve the robustness
of our network. Fig. 6 shows both the synthetic sketches and
hand-drawn sketches for a sampled mesh in two views.

5 USER INTERFACE

In this section, we introduce the design and implementa-
tion of our user interface. A two-stage sketching mode is
designed for coarse-to-fine modeling. Both a mouse and a
graphics tablet are allowed for sketching inputs, while a pen
tablet is highly preferred for its input accuracy. Fig. 7 shows
a complete modeling sequence for a representative example.
Please also refer to the attached video for the demonstration
of the interaction procedure, where a novice user, who has
little painting experiences and is also unfamiliar with our
system, is invited to conduct the sketching.

5.1 Sketching on View
To start with, our system provides two empty canvases:
one for front-view sketching and the other for side-view
sketching. As illustrated in Fig. 7, the front view of an
animal head stands for the perspective of its front face and
the side view can be used for either the left-side or right-side
viewpoint. We trained two models: single-view and dual-
view shape inference. Our system automatically chooses the
right trained model according to the canvas(es) the user is
interacting with.

Single-view Sketching. Users can choose either canvas
to start the drawing. Both drawing and erasing operations
are allowed and can be performed in an arbitrary order.
After each operation, the shape is instantly updated and
displayed on the 3D view panel. When drawing on the side-
view canvas, as shown in Fig. 7, either left-side sketching or
right-side sketching is allowed.

Dual-view Sketching. Usually, single-view drawing is
not enough to faithfully depict a target shape. Our system
provides the dual-view sketching mode, where the user

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 8

sketching on view

(a) (b)

(c)

sketching on surface

Fig. 7: Using our interactive sketching system, the user firstly sketches on the front-view canvas and then the side-view
canvas, where the predicted 3D shape is updated and displayed in real-time. After that, sketching on the surface is also
allowed for direct mesh manipulation. Three manipulation operations are provided: (a) editing with curve-handles; (b)
editing with vertex-handles; (c) surface sculpting.

(a) (b) (c)

Fig. 8: (a) We define several curve handles on a template
model; (b) During sketching procedure, once a mesh is
inferred, the curve handles are simultaneously provided;
(c) The pre-calculated curve handles will be automatically
tuned, by snapping onto high curvature lines.

can draw on both the front- and side-view canvases. To
avoid potential conflicts between two different views, an
alternative 2D line drawing of the synthesized 3D model can
be rendered with the Suggestive Contour method [47] in the
new view before canvas switching. This is only performed
for the first-time switching, to avoid the conflict between the
synthesized sketches and the existing ones when the user
moves back to the previous drawing canvas. Therefore, the
user only needs to make changes in the rendered drawing.
Note that the left-view is set as default for side-view sketch-
ing. When users wish to draw in the right view, they need
to press a shortcut-key to signal an explicit view change.
This is because the VDS-Net requires the view information
for conducting projection. In this mode, the 3D shape is
updated according to both two input sketches.

5.2 Sketching on Surface
To increase the controllability of the target shape for users,
our system also provides extra sketching tools for directly
manipulating the surface. Two tools are provided: handle-
based editing and brush-based sculpting.

5.2.1 Handle-based Editing
Similar to [2], when performing handle-based editing in our
system, users firstly select a vertex-handle or curve-handle
together with a region-of-interest (ROI), then deform the
surface inside the ROI by moving the handle.

Editing by Vertex-handles. Our interface allows the user
to select a vertex-handle by a mouse click and perform
editing in a drag-and-drop fashion. The ROI is determined

with a geodesic disk centered at the picked vertex, where
the radius has a default value and can be fine-tuned by the
user.

Editing by Curve-handles. Before editing the surface
geometry with a curve-handle, users need to specify a curve
on the 3D surface. To do so, users are asked to firstly pick a
view and then directly draw a curve on the 2D screen. Our
system then automatically locates the curve on the surface
by intersecting with the overlapped triangles. Note that, as
in [2], this will result in some new vertices and produce
a new meshing. We provide two ways for manipulating,
thus the user can 1) directly drag one of the vertices on the
curve to define the deformation, the same as [2]; 2) pick an
appropriate view and draw a new curve to define the target
position for the vertices on the curve-handle, similar to [8].
Our system also gives a default setting for determining the
ROI region of a curve-handle, which is also allowed to be
tuned.

Predefined Curve-handles. Practically, users tend to
pick some feature lines of an animal head as the curve-
handles, such as ear contours. However, manually select-
ing these 3D curves usually requires careful and time-
consuming interactions. To alleviate users’ loads, our system
provides some predefined curve-handles together with the
generated 3D model, as illustrated in Fig. 8. The key issue to
implement this function is how to infer topology-consistent
meshes for different sketch inputs, that is, the vertices on the
same semantic feature lines should share mesh-ids across
different models. Thus, we fine-tune our model: 1) pick one
of the resulted meshes of our trained network in the training
dataset and annotate the 7 landmark vertices (as in Sec. 4.2);
2) fine-tune the mesh inference network with an extra loss
function, to constrain the landmark vertices of the gener-
ated mesh targeting the labeled ones on the ground-truth
surfaces. Although such a fine-tuning operation produces
more consistent topology, the pre-calculated handles are still
not accurate, as shown in Fig. 8(b). We further optimize
the curves by snapping them onto high curvature regions,
to better match sharp feature lines. Besides, our system
provides a tool for users to directly modify the position of
pre-calculated curve-handles.

Real-time Editing. After determining the vertex-handles
or curve-handles and their ROI regions, a Laplacian matrix
is constructed and pre-decomposed for further real-time
editing, as implemented in [55].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 9

(a)

(d)

(h)

(k)

(b)

(e)

(i)

(l)

(c)

(f)

(j)

(m)

Fig. 9: Gallery results of our proposed sketching system. The models (a)-(f) are created by amateur users, who have no
modeling experience but own good drawing skills, using only the mode of sketching on views, without post-manipulation.
Specifically, for the dual-view sketching, the users could choose to render the other view of a 3D model synthesized based
on the sketch in one view to assist the drawing. On average, around 3 minutes were need to create each model. The models
(h)-(m) are produced by a user who is familiar with our system. Both sketching on views and sketching on surface are
used. It took around 10 minutes to design each model on average. For reference, we provide the models (in the dotted
boxes) immediately inferred by our network.

Fig. 10: We test the proposed mesh inference algorithm on
freeform sketches drawn by a child to further demonstrate
its generalization capability. The left two cases are generated
with single-view input, while the right ones are inferred
from dual-view sketches.

5.2.2 Brush-based Sculpting

Borrowing from [56], our system also provides both ex-
trusion and engraving brushes for surface sculpting. To
avoid artifacts, a subdivision is performed online for the
ROI region when applying these brushes on the surface.
The method of [57] is adopted for subdivision. A brush for
smoothing is also provided.

(a) (b) (c)

(d) (e) (f)

Fig. 11: The evaluation of our method for single-view inputs
with the Sketchy database [54]. The results are sampled from
the categories of (a) mouse, (b) bear, (c) cat, (d) pig, (e) lion,
and (f) sheep.

6 RESULTS AND EVALUATION

Our sketching system has been fully implemented on a
PC supporting both mouse and pen inputs. We used Ten-
sorFlow to train and test our mesh inference network.
Specifically, we trained the whole model for 50 epochs with
a learning rate of 10−4, which took around 2 days. 90%
sketch-mesh pairs are utilized as the training set and the
remaining for testing. Each forward of the mesh generator
takes 70 ms on average on a 3.6GHz Intel processor with a

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 10

Fig. 12: Visual comparisons on shape inference with single-
or dual-view sketches. For each model, two views are
shown. The models in the left-side are generated by single-
view sketches inside the dotted box, while the models in the
right-side are inferred with dual-view sketches.

Fig. 13: Six amateur users were invited to conduct modeling
using both the Fibermesh and our system, for comparison.
Each user was given a referenced image and asked to create
a similar shape. For each user, the created model with
Fibermesh is shown in the left-side while the one created
using our system is displayed in the right-side. The drawn
dual-view sketches when using our system are also shown.

GeForce TITAN Xp GPU. In the mode of sketching on the
surface, each deformation operation costs on average 50 ms,
supporting real-time editing.

6.1 Qualitative Results

Results Gallery. The first two rows in Fig. 9 show several
representative results of our sketch-based mesh inference
algorithm. For each example, we show the input sketch(es)
and the resulting 3D model in two viewpoints. Some of the
examples required only single-view sketches as input, while
the others take dual-view sketches as input. It shows that
the inferred 3D shapes all resemble the input sketches well.
More modeling results of 3D animal-like heads are shown
in the bottom two rows, where sketching on the surface is
utilized for mesh manipulation. As seen, our system allows
the creation of the models with diverse shapes. It took
around 3 minutes on average for creating one model of the
first two rows, and 10 minutes on average for one model of
the last two rows.

Single-view VS. Dual-view. In Fig. 12 we use two
examples to show the results of our model inference, from
single-view and dual-view sketches. For each example, the
models inferred from one of the two sketches and both of
them are shown. As expected, dual-view sketching is better
for users to control the target shapes.

Modeling Capability for Freeform Sketches. To fur-
ther demonstrate the generalization capability of our pro-
posed mesh inference model, we test it on several freeform
sketches that are drawn by a 5-year old child with sev-
eral months of painting experiences. Fig. 10 shows four
examples where two views are displayed per model and
the corresponding sketches are also given. The left two
cases are generated with single-view inputs, while the right
ones are inferred from dual-view sketches. Since there is no
notable sketch database for animal heads, we compromise to
evaluate our algorithm on the Sketchy database [54], which
is the first large-scale collection of sketch-photo pairs and
contains human drawings of various animal categories. The
sketches involving only head content are selected for our
single-view modeling. Fig. 11 shows several representative
results. As seen, evenly the line drawings are very casual,
the generated models still show reasonable matches with
the shape of given sketches.

6.2 Comparisons

We conducted comparisons between our proposed system
and state-of-the-art techniques in the following two aspects.

6.2.1 Comparisons on Sketching Interfaces
There exist several systems which are potentially alterna-
tives for modeling animal-like heads. We broadly divide
them into three categories based on their user interaction
to create 3D models: 1) directly sketching 3D curves on a
model surface to control its geometry, such as the operation
of FiberMesh [2]; 2) first sketching elaborate patch bound-
aries and strokes representing the major bending directions,
and then generating a curvature field that conforms to the
user strokes for the subsequent freeform surface deriva-
tion [26]; 3) more freeform sketches are allowed to infer
the 3D geometry of various representations (e.g., voxel,
depth map, normal map, implicit field, and mesh), some-
times followed by necessary post-processing to optimize
the shapes [4], [6]. Our proposed system falls into the third
category. However, most of these systems are not available
to the public, including [4], [6], [26]. Since the interaction
of the systems in the third category is similar and the
evaluation of the corresponding methods will be discussed
in the following section, we finally choose FiberMesh [2] as
the baseline for the comparison. Moreover, we also conduct
an informal comparison with ZBrush2, which is a general-
purpose commercial application for creating detailed 3D
models.

We acknowledge that both FiberMesh and ZBrush are
more general (beyond animal-like heads) than SAniHead.
We are interested in exploring our tool specialized for
animal-like heads is more powerful for novice users to
model shapes in this category than FiberMesh or ZBrush.

Comparison with FiberMesh. Six users were invited to
do the evaluation. Two of them had good drawing skills,
while others with limited training in drawing. They neither
were from a 2D/3D graphics background, nor had any
modeling experience. Each participant was asked to use the
two systems (i.e., FiberMesh and SAniHead) on a specific

2. https://pixologic.com/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 11

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 14: Qualitative comparisons on our method and existing deepnet-based approaches, given the same dual-view sketches
as input. (a) sketch-based shape retrieval [28]; (b) 3dR2N2 [34] (in 643); (c)OGN [37] (in 643); (d)MVRN [4]; (e)DeepSDF
[58]; (f) AtlasNet [44]; (g) Pixel2Mesh [9]; (h) Ours and (i) Ground truth. For the last two rows, there is no ground truth
for the given hand-drawn sketches.

2min 3min 6min 8min 0min 3min

3min 4min 7min 9min 0min 3min

Fig. 15: The models (l) and (m) in Fig. 9 were shown to
a skilled ZBrush artist, who was invited to create similar
shapes from a sphere using ZBrush. The whole process
was recorded. Four pivotal snapshots are shown in the left
column with time consumption. We further asked him to
reproduce them by adding geometry details to the results
generated by Pixel2Mesh (shown in the right column) to
compare with the synthesis details of our network (shown
in Fig. 9).

computer that had been set up ahead. The participant
should first randomly choose a system, and then received
a tutorial about how to use the chosen system. This took
around 20 minutes. Afterward, we randomly provided the
participant with an image of an animal head for reference
and asked him/her to create a similar 3D model. When the
participant completed the modeling, we invited him/her
to finish a brief questionnaire to get their feedback on the
user experience and modeling difficulty. After a short break,
the participant went through the evaluation of the other

system with the same procedure except that the reference
image was the one given in the first system. This modeling
session for each system was terminated after 20 minutes
or earlier if the participant was satisfied with the results.
The created models using the two different systems are
shown in Fig. 13. The input sketches of our system were
all dual-view in this evaluation. It can be seen obviously
that the models created using our system are visually better
and exhibit more animal-style details. All of the partici-
pants gave positive feedback on our system, and they had
a better user experience for our system than FiberMesh.
They commented that our system was smarter by quickly
generating an animal-like shape that better resembled the
drawn sketches. On average it took only 5 minutes (on
average, 4 minutes for sketching on two views and 1 minute
for sketching on the surface) for them to obtain a satisfying
result using our system, while they often ran out of the time
when using FiberMesh. We found the novices preferred to
draw 2D sketches than to edit 3D surfaces. Half of them
even did not utilize the tools to revise the models. This
discovery also confirms that directly 3D modeling is not
easy to grasp for amateurs.

Comparison with ZBrush. A skilled artist was recruited,
who had eight years of drawing experience and around five
years of modeling experience using ZBrush. He was given
two reference models and asked to use ZBrush to model
similar shapes. The modeling procedure was recorded.
Specifically, the models (l) and (m) in Fig. 9 were used as

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 12

the reference shapes, both of which were obtained within 12
minutes (around 4 minutes for sketching on the views and 8
minutes for sketching on the surface) with our system by an
amateur user with little training in modeling. We provided
the front and side rendering images of the models to the
artist. It took above 8 minutes for him to achieve a satisfying
result on average. The left column of Fig. 15 shows the
representative results during the process. Then, we invited
him to reproduce the semblable shapes from the output of
Pixel2Mesh by adding geometry details, which costed him
around 3 minutes. Note that ZBrush is designed for pro-
fessionals with 3D modeling skills or graphics knowledge,
while our system can be easily used by novices. Our system
makes amateurs create an impressive model using almost
the same time compared with artists.

Method Retrieval 3dR2N2 OGN MV RN DeepSDF AtlasNet P ixel2Mesh Ours

CD(×10−3) 3.114 2.857 7.262 3.102 2.403 1.533 0.9602 0.8173

Users’ Eva 27.47% 3.33% 0.40% 0.27% 6.00% 0.67% 1.73% 60.13%

TABLE 1: Quantitative comparisons on sketch-based mesh
inference. The first row reports the CD metric evaluation
(the lower the better) while the second row shows the voting
percentage from 50 users for the best results.

(a) (b) (c)

Fig. 16: Qualitative comparisons between our approach and
a parametric-based method, which first uses PCA to build
a parametric space and then uses a trained deep regression
model to map input sketches to a set of parameters. (a), (b),
and (c) are the results by using the parametric spaces with
dimensions = 100, 200, and 300, respectively. Please refer
to the corresponding results by our method in Fig. 14. A
consistent parametric space is hard to establish and regress
since the rich data diversity.

6.2.2 Comparisons on Mesh Inference
In this section, we evaluate and compare our method with
the existing approaches that can generate a mesh from an
input sketch.

Comparisons with Deepnet-based Methods. Many ex-
isting deep network designs could be utilized to build
the mapping from 2D sketches to the corresponding 3D
shapes of animal heads. We chose the methods of [34]
(denoted as 3dR2N2), [37] (denoted as OGN), [4] (denoted
as MVRN), [58] (denoted as DeepSDF), [44] (denoted as
AtlasNet) and [9] (Pixel2Mesh) for comparisons, because
of their publicly available implementations and representa-
tiveness. We further adopted a sketch-based shape retrieval

(a) (b) (c)

Fig. 17: Comparison between our method (c) with sketch-
based shape retrieval [28] for novel sketch inputs. Given
dual-view sketches, top-2 retrieved results are shown in (a)
and (b).

method [28] to search for the closest shapes from the training
data as a reference. For a fair comparison, the outputs of
these methods were all converted to a mesh representa-
tion. The Marching Cube technique [59] was used with a
threshold of 0.4 provided in [34] for mesh conversion from
the output occupancy probabilities of 3dR2N2 and OGN ,
whose resolutions were both in 643. The zero-isosurfaces of
DeepSDF generation in 643 were also extracted with the
Marching Cube technique. All the networks were trained
using dual-view inputs (i.e., the front view and left-side
view sketches), by taking the same training and testing data.
We evaluate the averaged CD metric for these methods and
report the results in Table 1. The visual comparisons are
shown in Fig. 14. Although the retrieval-based method [28]
searches similar shapes for the input sketches, their mor-
phologies are always different from the ground truth. It also
fails when the underlying models of the input sketches are
far from any model in the database. More visual results
are illustrated in Fig. 17. OGN and MVRN are pretty
difficult to train, leading to the unsatisfactory generation.
3dR2N2, AtlasNet, and Pixel2Mesh can produce gener-
ally satisfactory results but fail to capture geometry details
of animal heads. Even the recent implicit representation
learning method, such as DeepSDF , still produces kind of
smooth shapes and suffers from topological artifacts when
the structure is thin (e.g., in the horn regions), due to the
fact that extracting global features from the input sketches
would lose detail information for reconstruction. Note that
the mesh results of 3dR2N2, OGN , and DeepSDF contain
more than 10,000 vertices in our experiments, while ours
are with only 4,962 vertices. Our method led to much
better results, both qualitatively and quantitatively. The CD
metric is usually not sufficient to evaluate the output quality,
especially for synthesized details. We thus conducted an
extra user study (please refer to supplemental material for
details). We randomly selected 15 examples and invited 50

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 13

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 18: Qualitative ablation analysis on our network design. (a)-(h) correspond to Table 2.

subjects to evaluate the visual quality of the results by the
compared methods. Specifically, for each example, given
input sketches and the corresponding results synthesized
with different methods, each participant was asked to pick
a result that best resembles the input sketches. The voting
percentages are reported in Table 1, from which we can see
that the results by our method were highly preferred by the
participants.

Comparison with Parametric-based Method. Another
straightforward solution is to firstly build a parametric
space for animal-like head models and then train a deep-
regression model to map sketches into a set of parameters,
as similarly done in [8]. We thus firstly built the dense corre-
spondences across all the models, using the approach men-
tioned in the part of ”model interpolation” in Section 4.2.
After that, the method of [60] was exploited to construct the
parametric space. Three spaces with different dimensions,
i.e., 100-d, 200-d, and 300-d, were finally built. We separately
trained the deep regression models for them, which are
denoted asDeepReg100,DeepReg200, andDeepReg300. The
evaluated CD metric for these inference models are 63.2,
62.4, and 61.0 respectively (all with 10−3) (Please refer to
Table 1 for the CD value of our method), while the visual
comparisons of two sampled examples are shown in Fig. 16.
As seen, the results of parametric-based methods are far
from satisfactory. The reasons are two-fold: 1) due to the
complexity and diversity of the studied shape space, it is
difficult to build a low-dimensional parametric space; 2)
regressing many parameters is inherently a very challenging
task.

Comparison with Sketch-based Retrieval. We have
compared our approach with the method of [28] in the
previous subsection. Fig. 17 shows the visual comparisons
for the inputs of more novel dual-view sketches, where the
top-2 retrieved models are shown. As seen, the results by
our approach better resembles the input sketches due to its
better generalization ability.

6.3 Ablation Study on Network Architecture
Our network design has many options. In this section, we
conducted an ablation study to evaluate their effects. Specif-
ically, 7 alternative architectures were evaluated: (a) w/o
view-surface alternating mesh enhancing, which was our
baseline, i.e., only with Pixel2Mesh; (b) w/o surface-based
detail refinement, i.e., only applying Pixel2Mesh+VDS-Net;
(c) w/o end-to-end training, i.e., simply concatenating the
pre-trained sub-networks together; (d) w/o sketch guidance

w/o phases (a) (b) (c) (d) (e) (f) (g) (h)

CD(×10−3) 0.9602 0.8331 0.8330 0.9245 0.8362 0.8371 0.8302 0.8173

TABLE 2: The evaluated CD metric on our testing dataset
for 7 alternative network designs. The smaller the better. (a)
w/o the stage of view-surface alternative mesh enhancing
(i.e., using Pixel2Mesh only); (b) w/o surface-based detail
refinement; (c) w/o end-to-end training; (d) w/o sketch
guidance for in VDS-Net; (e) w/o sketch guidance in SDR-
Net; (f) w/o cascaded mechanism for displacement infer-
ence; (g) w/o cascaded mechanism for VDS-Net+SDR-Net;
(h) our whole architecture.

in VDS-Net; (e) w/o sketch guidance in SDR-Net; (f) w/o the
cascaded mechanism for displacement inference; (g) w/o
the cascaded mechanism for VDS-Net+SDR-Net. Table 2 re-
ports the CD evaluation for these alternative designs. Fig. 14
shows the qualitative results of two sampled examples by
the alternative methods. As seen, our final design produces
the best results.

7 CONCLUSION AND LIMITATIONS

In this paper, we have presented an easy-to-use sketching
system for modeling 3D animal-like character heads. Our
user interface allows users to sketch on either single-view
(front-view or side-view) or dual-view canvas for initial
modeling and sketch on the surface for more detailed ma-
nipulation in real-time. Built upon Pixel2Mesh, an end-
to-end mesh inference network is trained to map input
sketches to a clean mesh. Our method based on a novel
view-surface alternating mesh enhancing network synthe-
sizes geometry details very well. Both qualitative and quan-
titative comparisons show the superiority of our method
over state-of-the-art techniques and alternative solutions.
The user evaluations also verify the usability of our inter-
face.

Fig. 19: The limitation of our system to model complex
shapes. As shown, the horns of the deer and the open mouth
of the hippo cannot be reconstructed correctly.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 14

Limitations and Further Works. Our system still suffers
from several limitations, which are left as future works.
First, the output meshes still lack fancy geometric details,
compared with the ground truth. This might be improved
by designing a more efficient feature extraction layer on a
mesh, rather than graph convolutions. More effective sur-
face metrics for details, e.g., [61], are also worth studying in
the future. Second, our current system lacks details control-
lability in the mode of “Sketching on View”. For example,
it is not allowed to do asymmetric details enhancement.
If the users are unsatisfied with the automatically inferred
geometric details, they are only allowed to do the tuning
in the mode of “Sketching on Surface”. Third, this work
has focused on head modeling only. It might be interesting
to make an extension to full-body animals, where the pose
modeling needs to be considered. Fourth, as illustrated in
Fig. 19, using our system 1) is very hard to create shapes
with thin structures (the left example) due to the modeling
capability of deformation-based methods; 2) tends to pro-
duce artifacts when the shape is far from the models in our
dataset (the right example) due to the limited generalization
ability of our mesh inference algorithm.

ACKNOWLEDGEMENT

The authors would like to thank the reviewers for their
constructive comments, and the participants of our user
study for their precious time. The work was supported in
part by the National Key R&D Program of China with grant
No. 2018YFB1800800, by the Key Area R&D Program of
Guangdong Province with grant No. 2018B030338001, by
Shenzhen Outstanding Talents Training Fund, by Guang-
dong Research Project (No. 2017ZT07X152), by Zhejiang Lab
(No. 2019NB0AB03), by the Research Grants Council of the
Hong Kong Special Administrative Region, China (Project
No. CityU 11212119), by the City University of Hong Kong
(Project No. 7005176), by Hong Kong Research Grants
Council under General Research Funds (HKU17206218),
and by the National Natural Science Foundation of China
(61902334, 61629101, 61672482).

REFERENCES

[1] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: A sketching
interface for 3d freeform design,” in Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive Techniques,
ser. SIGGRAPH ’99. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1999, pp. 409–416. [Online]. Available:
http://dx.doi.org/10.1145/311535.311602

[2] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “Fibermesh:
designing freeform surfaces with 3d curves,” ACM transactions on
graphics (TOG), vol. 26, no. 3, p. 41, 2007.

[3] J. Delanoy, M. Aubry, P. Isola, A. Efros, and A. Bousseau, “3d
sketching using multi-view deep volumetric prediction,” Proceed-
ings of the ACM on Computer Graphics and Interactive Techniques,
vol. 1, no. 21, 2018.

[4] Z. Lun, M. Gadelha, E. Kalogerakis, S. Maji, and R. Wang, “3d
shape reconstruction from sketches via multi-view convolutional
networks,” in 3D Vision (3DV), 2017 International Conference on.
IEEE, 2017, pp. 67–77.

[5] W. Su, D. Du, X. Yang, S. Zhou, and H. Fu, “Interactive sketch-
based normal map generation with deep neural networks,” Pro-
ceedings of the ACM on Computer Graphics and Interactive Techniques,
vol. 1, no. 1, pp. 1–17, 2018.

[6] C. Li, H. Pan, Y. Liu, X. Tong, A. Sheffer, and W. Wang, “Robust
flow-guided neural prediction for sketch-based freeform surface
modeling,” in SIGGRAPH Asia 2018 Technical Papers. ACM, 2018,
p. 238.

[7] G. Nishida, I. Garcia-Dorado, D. G. Aliaga, B. Benes, and
A. Bousseau, “Interactive sketching of urban procedural models,”
ACM Transactions on Graphics (TOG), vol. 35, no. 4, p. 130, 2016.

[8] X. Han, C. Gao, and Y. Yu, “Deepsketch2face: a deep learning
based sketching system for 3d face and caricature modeling,”
ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 126, 2017.

[9] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang,
“Pixel2mesh: Generating 3d mesh models from single rgb im-
ages,” in ECCV, 2018.

[10] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution
using deep convolutional networks,” IEEE transactions on pattern
analysis and machine intelligence, vol. 38, no. 2, pp. 295–307, 2015.

[11] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-
resolution using very deep convolutional networks,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 1646–1654.

[12] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced
deep residual networks for single image super-resolution,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, 2017, pp. 136–144.

[13] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,
A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-
realistic single image super-resolution using a generative adver-
sarial network,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 4681–4690.

[14] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” CVPR, 2017.

[15] L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge, “Sketch-
based modeling: A survey,” Computers & Graphics, vol. 33, no. 1,
pp. 85–103, 2009.

[16] C. Ding and L. Liu, “A survey of sketch based modeling systems,”
Frontiers of Computer Science, vol. 10, no. 6, pp. 985–999, 2016.

[17] K. Singh and E. Fiume, “Wires: a geometric deformation tech-
nique,” in Proceedings of the 25th annual conference on Computer
graphics and interactive techniques. ACM, 1998, pp. 405–414.

[18] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or, “A
sketch-based interface for detail-preserving mesh editing,” ACM
Trans. Graph., vol. 24, no. 3, pp. 1142–1147, Jul. 2005. [Online].
Available: http://doi.acm.org/10.1145/1073204.1073324

[19] R. Schmidt, B. Wyvill, M. C. Sousa, and J. A. Jorge, “Shapeshop:
Sketch-based solid modeling with blobtrees,” in ACM SIGGRAPH
2006 Courses. ACM, 2006, p. 14.

[20] O. A. Karpenko and J. F. Hughes, “Smoothsketch: 3d free-form
shapes from complex sketches,” in ACM Transactions on Graphics
(TOG), vol. 25, no. 3. ACM, 2006, pp. 589–598.

[21] Y. Gingold, T. Igarashi, and D. Zorin, “Structured annotations
for 2d-to-3d modeling,” in ACM Transactions on Graphics (TOG),
vol. 28, no. 5. ACM, 2009, p. 148.

[22] F. Cordier, H. Seo, J. Park, and J. Y. Noh, “Sketching of mirror-
symmetric shapes,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 11, pp. 1650–1662, 2011.

[23] C. Shao, A. Bousseau, A. Sheffer, and K. Singh, “Crossshade:
Shading concept sketches using cross-section curves,” ACM Trans-
actions on Graphics (Proceedings of ACM SIGGRAPH 2012), vol. 31,
no. 4, 2012. [Online]. Available: http://www.crossshade.com

[24] B. Xu, W. Chang, A. Sheffer, A. Bousseau, J. McCrae, and K. Singh,
“True2form: 3d curve networks from 2d sketches via selective
regularization,” Transactions on Graphics (Proc. SIGGRAPH 2014),
vol. 33, no. 4, 2014.

[25] H. Pan, Y. Liu, A. Sheffer, N. Vining, C.-J. Li, and W. Wang,
“Flow aligned surfacing of curve networks,” ACM Transactions on
Graphics (TOG), vol. 34, no. 4, p. 127, 2015.

[26] C. Li, H. Pan, Y. Liu, A. Sheffer, and W. Wang, “Bendsketch:
Modeling freeform surfaces through 2d sketching,” ACM Trans.
Graph. (SIGGRAPH), vol. 36, no. 4, pp. 125:1–125:14, 2017.

[27] M. Eitz, R. Richter, T. Boubekeur, K. Hildebrand, and M. Alexa,
“Sketch-based shape retrieval.” ACM Trans. Graph., vol. 31, no. 4,
pp. 31–1, 2012.

[28] F. Wang, L. Kang, and Y. Li, “Sketch-based 3d shape retrieval
using convolutional neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
1875–1883.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 15

[29] L. Fan, R. Wang, L. Xu, J. Deng, and L. Liu, “Modeling by drawing
with shadow guidance,” Computer Graphics Forum (Proc. of Pacific
Graphics 2013), vol. 23, no. 7, pp. 157–166, 2013.

[30] X. Xie, K. Xu, N. J. Mitra, D. Cohen-Or, W. Gong, Q. Su, and
B. Chen, “Sketch-to-design: Context-based part assembly,” in Com-
puter Graphics Forum, vol. 32, no. 8. Wiley Online Library, 2013,
pp. 233–245.

[31] K. Xu, K. Chen, H. Fu, W.-L. Sun, and S.-M. Hu, “Sketch2scene:
sketch-based co-retrieval and co-placement of 3d models,” ACM
Transactions on Graphics (TOG), vol. 32, no. 4, pp. 1–15, 2013.

[32] X. Guo, J. Lin, K. Xu, S. Chaudhuri, and X. Jin, “Customcut: On-
demand extraction of customized 3d parts with 2d sketches,” in
Computer Graphics Forum, vol. 35, no. 5. Wiley Online Library,
2016, pp. 89–100.

[33] L. Li, H. Fu, and C.-L. Tai, “Fast sketch segmentation and label-
ing with deep learning,” IEEE computer graphics and applications,
vol. 39, no. 2, pp. 38–51, 2018.

[34] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3d-r2n2: A
unified approach for single and multi-view 3d object reconstruc-
tion,” in European conference on computer vision. Springer, 2016,
pp. 628–644.

[35] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta, “Learning
a predictable and generative vector representation for objects,” in
European Conference on Computer Vision. Springer, 2016, pp. 484–
499.

[36] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning
a probabilistic latent space of object shapes via 3d generative-
adversarial modeling,” in Advances in Neural Information Processing
Systems, 2016, pp. 82–90.

[37] M. Tatarchenko, A. Dosovitskiy, and T. Brox, “Octree generating
networks: Efficient convolutional architectures for high-resolution
3d outputs,” in Proc. of the IEEE International Conf. on Computer
Vision (ICCV), vol. 2, 2017, p. 8.

[38] P.-S. Wang, C.-Y. Sun, Y. Liu, and X. Tong, “Adaptive o-cnn: a
patch-based deep representation of 3d shapes,” in SIGGRAPH Asia
2018 Technical Papers. ACM, 2018, p. 217.

[39] H. Fan, H. Su, and L. J. Guibas, “A point set generation network
for 3d object reconstruction from a single image,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 605–613.

[40] C.-H. Lin, C. Kong, and S. Lucey, “Learning efficient point cloud
generation for dense 3d object reconstruction,” in Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[41] A. Arsalan Soltani, H. Huang, J. Wu, T. D. Kulkarni, and J. B.
Tenenbaum, “Synthesizing 3d shapes via modeling multi-view
depth maps and silhouettes with deep generative networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 1511–1519.

[42] X. Zhang, Z. Zhang, C. Zhang, J. Tenenbaum, B. Freeman, and
J. Wu, “Learning to reconstruct shapes from unseen classes,” in
Advances in Neural Information Processing Systems, 2018, pp. 2263–
2274.

[43] H. Kato, Y. Ushiku, and T. Harada, “Neural 3d mesh renderer,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 3907–3916.

[44] T. Groueix, M. Fisher, V. G. Kim, B. Russell, and M. Aubry,
“AtlasNet: A Papier-Mâché Approach to Learning 3D Surface
Generation,” in Proceedings IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018.

[45] H. Huang, E. Kalogerakis, E. Yumer, and R. Mech, “Shape syn-
thesis from sketches via procedural models and convolutional
networks,” IEEE transactions on visualization and computer graphics,
vol. 23, no. 8, 2017.

[46] L. Wang, C. Qian, J. Wang, and Y. Fang, “Unsupervised learning
of 3d model reconstruction from hand-drawn sketches,” in 2018
ACM Multimedia Conference on Multimedia Conference. ACM, 2018,
pp. 1820–1828.

[47] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella,
“Suggestive contours for conveying shape,” ACM Transactions on
Graphics (TOG), vol. 22, no. 3, pp. 848–855, 2003.

[48] Q. Chen and V. Koltun, “Photographic image synthesis with cas-
caded refinement networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1511–1520.

[49] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruc-
tion,” ACM Transactions on Graphics (ToG), vol. 32, no. 3, p. 29, 2013.

[50] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “Laplacian
mesh optimization,” in Proceedings of the 4th international conference

on Computer graphics and interactive techniques in Australasia and
Southeast Asia. ACM, 2006, pp. 381–389.

[51] K. G. Kobayashi and K. Ootsubo, “t-ffd: free-form deformation by
using triangular mesh,” in Proceedings of the eighth ACM symposium
on Solid modeling and applications. ACM, 2003, pp. 226–234.

[52] Y. Yang, X.-M. Fu, S. Chai, S.-W. Xiao, and L. Liu, “Volume-
enhanced compatible remeshing of 3d models,” IEEE transactions
on visualization and computer graphics, vol. 25, no. 10, pp. 2999–3010,
2018.

[53] J. Canny, “A computational approach to edge detection,” IEEE
Transactions on pattern analysis and machine intelligence, no. 6, pp.
679–698, 1986.

[54] P. Sangkloy, N. Burnell, C. Ham, and J. Hays, “The sketchy
database: learning to retrieve badly drawn bunnies,” ACM Trans-
actions on Graphics (TOG), vol. 35, no. 4, pp. 1–12, 2016.

[55] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-
P. Seidel, “Laplacian surface editing,” in Proceedings of the 2004
Eurographics/ACM SIGGRAPH symposium on Geometry processing.
ACM, 2004, pp. 175–184.

[56] M. Peng, J. Xing, and L.-Y. Wei, “Autocomplete 3d sculpting,”
ACM Transactions on Graphics (TOG), vol. 37, no. 4, p. 132, 2018.

[57] C. Loop, “Smooth subdivision surfaces based on triangles,” Mas-
ter’s thesis, University of Utah, Department of Mathematics, 1987.

[58] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Love-
grove, “Deepsdf: Learning continuous signed distance functions
for shape representation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 165–174.

[59] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolu-
tion 3d surface construction algorithm,” in ACM siggraph computer
graphics, vol. 21, no. 4. ACM, 1987, pp. 163–169.

[60] V. Blanz and T. Vetter, “A morphable model for the synthesis of
3d faces,” in Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, 1999, pp. 187–194.

[61] D. Smirnov, M. Fisher, V. G. Kim, R. Zhang, and J. Solomon, “Deep
parametric shape predictions using distance fields,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2020, pp. 561–570.

Dong Du is a fifth-year PhD student of Univer-
sity of Science and Technology of China, and a
visiting student of Shenzhen Research Institute
of Big Data. He received his BSc in applied
mathematics in 2014 from Nanjing University of
Science and Technology, and visited the School
of Creative Media, City University of Hong Kong
as a research associate in 2017. His research
mainly focuses on computer graphics and 3D
deep learning.

Xiaoguang Han received his BSc in mathemat-
ics in 2009 from NUAA and his MSc in applied
mathematics in 2011 from Zhejiang University.
He obtained his PhD degree in 2017 from HKU.
He is currently a Research Assistant Professor
at Shenzhen Research Institute of Big Data, the
Chinese University of Hong Kong(Shenzhen).
His research mainly focuses on computer vision,
computer graphics and 3D deep learning.

Hongbo Fu is a full professor in the School of
Creative Media, City University of Hong Kong.
Before joining CityU, he had postdoctoral re-
search trainings at the Imager Lab, University
of British Columbia, Canada and the Depart-
ment of Computer Graphics, Max-Planck-Institut
Informatik, Germany. He received the PhD de-
gree in computer science from the Hong Kong
University of Science and Technology in 2007
and the BS degree in information sciences from
Peking University, China, in 2002. His primary

research interests fall in the fields of computer graphics and human
computer interaction. He has served as an associate editor of The Visual
Computer, Computers&Graphics, and Computer Graphics Forum.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 20XX 16

Feiyang Wu is currently an senior undergrad-
uate student at the CUHK Shenzhen. He ma-
jors in Computer Science and Engineering. After
finishing his internship at Didi Chuxing Co., Wu
continued his academic pursuit. He is looking for
a PhD position in computer vision area.

Yizhou Yu is a full professor in the Depart-
ment of Computer Science at the University of
Hong Kong. He was first a tenure-track and
then a tenured professor at University of Illinois,
Urbana-Champaign (UIUC) for 12 years. He has
also collaborated with eBay Research, Google
Brain and Microsoft Research in the past. He
received his PhD degree in computer science
from the computer vision group at University of
California, Berkeley. He also holds a MS degree
in applied mathematics and a BE degree in com-

puter science and engineering from Zhejiang University. His current
research interests include deep learning methods for machine intel-
ligence, computational visual media, geometric computing, intelligent
video surveillance, and biomedical data analysis.

Shuguang Cui received his Ph.D in Electrical
Engineering from Stanford University, California,
USA, in 2005. Afterwards, he has been working
as assistant, associate, full, Chair Professor in
Electrical and Computer Engineering at the Univ.
of Arizona, Texas A&M University, and UC Davis,
respectively. He is currently a Chair Professor at
CUHK Shenzhen and the Vice Director at Shen-
zhen Research Institute of Big Data. His current
research interests focus on data driven large-
scale system control and resource management,

large data set analysis, IoT system design, energy harvesting based
communication system design, and cognitive network optimization.

Ligang Liu is a professor at the School of
Mathematical Sciences, University of Science
and Technology of China. He received his B.Sc.
(1996) and his Ph.D. (2001) from Zhejiang Uni-
versity, China. Between 2001 and 2004, he
worked at Microsoft Research Asia. Then he
worked at Zhejiang University during 2004 and
2012. He paid an academic visit to Harvard
University during 2009 and 2011. His research
interests include digital geometric processing,
computer graphics, and image processing. He

serves as the associated editors for journals of IEEE Transactions on
Visualization and Computer Graphics, IEEE Computer Graphics and
Applications, Computer Graphics Forum, Computer Aided Geometric
Design, Computers&Graphics, and The Visual Computer. He served
as the conference co-chair of GMP 2017 and the program co-chairs
of SIAM GD 2019, GMP 2018, CAD/Graphics 2017, CVM 2016, SGP
2015, and SPM 2014. His research works could be found at his research
website: http://staff.ustc.edu.cn/˜lgliu

