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Figure 1: ProInterAR is an integrated visual programming platform for creating immersive AR interactions with a tablet and
an AR-HMD device. (a)-(b) The AR creator specifies physical contents or creates virtual contents (i.e., a physical white box
and a virtual tree) from the AR-HMD. (c)-(d) The creator programs the interactive behaviors of the created AR contents from
a block-based visual programming interface in the tablet. (e) The creator executes, watches, and controls the programmed
AR application in the AR scene. In this example, an AR game “pat and bounce” is created using ProInterAR: The player first
uses his hands to pat a virtual ball to make it move in the AR space continuously. It will bounce when it collides with the AR
contents (i.e., physical walls, ground, a physical box, a physical chair, and a virtual tree). If the player catches and pats the ball
once by hand, the score will be added by one.

ABSTRACT
AR applications commonly contain diverse interactions among dif-
ferent AR contents. Creating such applications requires creators to
have advanced programming skills for scripting interactive behav-
iors of AR contents, repeated transferring and adjustment of virtual
contents from virtual to physical scenes, testing by traversing be-
tween desktop interfaces and target AR scenes, and digitalizing
AR contents. Existing immersive tools for prototyping/authoring
such interactions are tailored for domain-specific applications. To
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support programming general interactive behaviors of real ob-
ject(s)/environment(s) and virtual object(s)/environment(s) for novice
AR creators, we propose ProInterAR, an integrated visual program-
ming platform to create immersive AR applications with a tablet
and an AR-HMD. Users can construct interaction scenes by creating
virtual contents and augmenting real contents from the view of
an AR-HMD, script interactive behaviors by stacking blocks from
a tablet UI, and then execute and control the interactions in the
AR scene. We showcase a wide range of AR application scenarios
enabled by ProInterAR, including AR game, AR teaching, sequential
animation, AR information visualization, etc. Two usability studies
validate that novice AR creators can easily program various desired
AR applications using ProInterAR.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; Mixed / augmented reality; Graph-
ical user interfaces; User interface toolkits.
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1 INTRODUCTION
Augmented Reality (AR) seamlessly blends the virtual and phys-
ical realms, enhancing our perception and providing immersive
experiences that were once confined to science fiction. From en-
tertainment and gaming [30, 33] to education [43], healthcare [51],
and industry [10], AR applications have the potential to transform
numerous sectors and redefine the way we live, work, and play [6].

AR applications involve numerous types of interactions of both
real and virtual AR contents in dynamic or static forms. Currently, a
typical workflow to create AR applications usually consists of four
steps: 1) conceptualize and plan basic ideas; 2) build AR contents by
augmenting physical elements with virtual elements; 3) design user
interfaces and AR interactions required for users to interact with
the contents; 4) script the controlling and reactive behaviors of the
AR contents in game engines and frameworks (e.g., Unity, Unreal,
ARKit, ARCore). One significantly difficult step for inexperienced
creators without strong programming background is to script AR
interactions [20] since it requires advanced low-level coding skills
and heavy coding tasks. In virtue of visual scripting [26], some
desktop-based tools (e.g., Unreal Blueprints and Lens Studio) en-
able users to script AR experience using node-based programming.
Although they relieve the programming burden, they require the
AR contents to be placed first in a virtual scene or template and
then transferred to a physical scene with repeated adjustment. Be-
sides, they require creators to traverse between programming on
desktop interfaces and testing on target AR scenes from mobile
devices, limiting flexibility [2]. On the other hand, AR contents and
their properties (e.g., motion, appearance) need to be obtained or
used during programming. Virtual contents can be accessed easily
in virtual representations, while real-world contents need to be
digitized for access by desktop-based programming interfaces and
scripted behavior transfer in AR scenes. How to smoothly fuse the
AR contents in programming remains a question for novice AR
creators.

To make the creation of AR applications to be more in situ,
researchers have proposed various immersive toolkits for author-
ing and prototyping AR interactions. Such toolkits allow users to
specify reactive behaviors of AR contents via visual programming
workflows [39, 40, 48, 52]. However, these works have mainly fo-
cused on domain-specific interaction tasks (e.g., gestural interaction
[39], toy-based interaction [52], spatially-aware interaction [48],
human-centered context-aware interaction [40]). For more general
AR interactions, the behaviors of the real and virtual contents might
contain many properties and variations to be controlled, so it is
hard to achieve them using existing toolkits. Recent works like
LearnIoTVR [53] and FlowMatic [50] are proposed for creating gen-
eral VR applications. However, they focus on scripting interactions

among virtual contents, while we aim to handle AR scenes contain-
ing both real and virtual contents and more complex interactive
paradigms, especially between the real and virtual contents.

There are still very few tools for supporting novice AR creators
to create general AR applications. One of the exceptions is ARcadia
[19], which presents a prototyping platform for a real-time tangible
interface based on block-based visual programming. However, it
employs marker-based AR through a laptop camera with a fixed
viewpoint while we want to utilize the advantages of markerless
AR based on AR-HMD (Augmented Reality Head Mounted Display)
to provide a more flexible and immersive interface for scripting
3D behaviors of AR contents tightly coupled with users’ surround-
ings. In this work, we first discuss the design scope of general AR
interactions. Based on it, we propose ProInterAR, a block-based vi-
sual programming system to create immersive AR interactions, for
novice AR creators who have some background in programming
but limited experience in creating AR applications.

To achieve in-situ and portable authoring experience and re-
lieve hand fatigue, we provide user interfaces (UIs) with integrated
devices: a visual programming UI from a tablet browser, a scene
creation, execution, and controlling UI from an AR-HMD. Creators
can construct interaction scenes by creating AR contents from the
view of the AR-HMD, script the interactive behaviors by stacking
blocks from the tablet UI, and then execute and view the scripted
interactions by controlling the contents and detecting the interac-
tions in the AR scene. We design the programming blocks based on
Scratch [32], which can be dragged, stacked, and grouped to any
created/specified AR contents. Various types of interactions can be
implemented with a diverse range of blocks. We demonstrate four
application scenarios (i.e., AR game, AR teaching, sequential ani-
mation, AR information visualization) to show its expressiveness
and usability. We conducted two usability studies with AR creators
to evaluate the usefulness of ProInterAR. From the studies, we find
that novice AR creators can easily create diverse AR applications
with varying complexity using our system.

In summary, our work makes the following contributions:

• A design scope that describes general AR interactions.
• A visual programming toolkit integrating a tablet browser
and an AR-HMD for creating general AR interactions.

• A demonstration of application scenarios.
• Two usability studies to validate the usefulness of the pro-
posed system.

2 RELATEDWORK
2.1 Visual Programming Approaches and

Interfaces
To program interactive behaviors, developers usually use tradi-
tional text-based programming interfaces to express the logic, iter-
ation, and operation. However, it requires a steep learning curve
and a solid understanding of syntax and coding structures. Vi-
sual programming paradigms [4, 26] are proposed to lower the
entry barriers to non-experienced developers, with the forms of
flowchart-based programming [5, 15, 49], block-based program-
ming [17, 32, 53], state-machine programming [3, 21], etc. As a
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representative type of flowchart-based programming, node-graph-
based programming is widely adopted in prototyping complex pro-
gram logic and data processing pipelines for various applications,
e.g., graphical applications [37], AR/VR applications [31, 34, 50],
and machine learning tasks [9]. Alternatively, block-based program-
ming [13, 19, 24, 32] is considered to be easy for beginners [1, 41, 53]
by utilizing simple and self-contained blocks and drag-and-drop
interfaces. Among them, Scratch [32] is one of the popularly used
tools for kids and beginners to create interactive 2D graphical ap-
plications, e.g., stories, animations, games. We share a similar goal
with Scratch – to allow non-professional creators to create interac-
tive applications easily, but differently – to script immersive 3D AR
applications. Thus, we carefully design our visual programming
interface based on Scratch.

2.2 Toolkits of Developing AR/VR Applications
Currently, professional creators usually resort to 3D game engines
such as Unreal and Unity to create AR/VR applications by build-
ing scenes and writing scripts using the programming language
supported by a chosen engine. Creators must implement object
behaviors, user interactions, gameplay mechanics, and any cus-
tom functionalities required for the AR/VR experience. However, it
requires extensive low-level programming.

To address this issue, researchers have explored the use of dif-
ferent types of visual programming interfaces with lower entry
barriers in building AR/VR applications [11, 14, 17, 19, 50]. Commer-
cial tools [34, 38] with rich media integration employ node-based
systems and allow users to connect nodes that represent specific
actions, operations, or functions to define the logic and interactive
behavior. However, these tools require users to first build scenes
and script programs on desktop interfaces and then deploy the ap-
plications on target AR/VR-enabled devices, and place AR contents
first on virtual scenes or templates and then convert and adjust
them to physical scenes repeatedly. Meanwhile, users must map
the real-world contents and their digital representations in the au-
thoring tools. The gap between the target scene and the developing
platform induces in-situ programming interfaces. For example, an
early work, Smarter Objects [14], introduces an initial prospect in
designing a tablet-based AR interface to program the functionality
of physical objects and virtual interactions by connecting lines.
We also utilize a tablet-based visual programming interface, but
differently, targeting immersive AR scenes for more general 3D
interactions. ARcadia [19] presents a block programming interface
to define and execute interactive behaviors between tangible ob-
jects and UI elements in marker-based AR scenes. It is built on a
desktop with a camera with limited FoV. In contrast, our markerless
AR-HMD system enable users to author and test AR interactions
from an AR-HMD and program on a tablet, thus allowing users to
experience unconstrained perspectives while keeping free traverse
between two devices. BlocklyXR [17] adopts a block-based pro-
gramming approach to allow general users to design storytelling.
Compared to these works, we aim to support the programming of
3D interactions of various physical/virtual objects/environments
controlled from an AR-HMD, especially for the close interactions
between the virtual and physical elements. Besides, our system sup-
ports hand-based interactions such as hand grasping and collision.

For VR applications, FlowMatic [50] and XRSpotlight [11] utilize
functional reactive programming and programming with examples,
respectively, to help developers build VR interactions. While they
provide much control to event- and example-based interactions for
virtual objects, our block-based programming UI introduces more
basic programming concepts with flexible combination and event
listening for both virtual and physical objects.

2.3 AR Authoring/Prototyping Interfaces for
Contents and Interactions

Instead of programming interfaces, recent research has focused
more on exploring interactive techniques for authoring and pro-
totyping AR contents and interactions. Various types of interac-
tions can occur between real and virtual contents, such as respon-
sive and interactive visualization and animation between humans,
tangible objects, sketches, and animated characters[18, 27, 29, 36,
44, 47], freehand AR interactions with digital contents [8, 39],
spatially-aware interactions among physical objects and humans
[46, 48], etc. Although most existing works propose novel author-
ing workflows for creating AR experiences and interactions for
end-users/designers, they support creating domain-specific AR ap-
plications. More general and customized interactions that contain
multiple control (e.g., conditions, iterations, loops, time waiting) are
not well supported. For example, CAPturAR [40] provides an AR
programming interface to author human-involved context-aware
interactions. Instead of human-centered behavior, we want to sup-
port more general AR interactions happening with various real
(including a user’s hands and head) and virtual contents. From the
design goal’s perspective, CAPturAR aims to provide a high-level
rule-based authoring tool for building personalized daily applica-
tions based on historical context data, while ours offers a grounded
programming tool to script various AR interactions from the basic
function combination. ProObjAR [48] allows users to design spatial
interactions of physical objects in an event-triggering workflow,
but it does not support the design of linked interactions that in-
volve multiple event-triggering mechanisms. In AR applications,
the interactive behavior of one object might work as the triggering
condition of another object’s behavior. The object behaviors might
have different levels of variations to be controlled. However, the
existing works can only author the pre-defined interaction work-
flows. To fill in these gaps, we propose a programming toolkit that
can 1) offer more control over the behavior properties and varia-
tions and 2) handle different levels of control (e.g., iterations, loops)
of/between the behaviors of the object(s).

3 DESIGN SCOPE OF GENERAL AR
INTERACTIONS

Since most of the existing AR authoring tools are tailored for spe-
cific tasks, there is no framework discussing the possibilities and
boundaries of general AR interactions. In this section, we develop a
design scope that describes general AR interactions from multiple
dimensions, and discuss how ours and the closely related works
support these dimensions.

Subject. AR contents can be divided into four subject types: real
objects (e.g., tangible items, human body parts, animals), virtual
objects (e.g., 3D models, visual effects and filters, annotations), real
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Table 1: Design scope of AR interactions, and how the closely related works cover the dimensions. RO, VO, RE, and VE refer to
real objects, virtual objects, real environments, and virtual environments, respectively.

ProInterAR CAPturAR[40] ProObjAR[48] GesturAR[39] Pronto[22] MechARSpace[52] Rapido[21] ARcadia[19] RealityCanvas[44] ARMath[18] Teachable	Reality[25]

Subject

RO ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
VO ✔ ✔ ✔ ✔ ✔

RO - VO ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
RO - RE ✔ ✔ ✔ ✔ ✔ ✔
RO - VE ✔
VO - RE ✔ ✔ ✔ ✔ ✔
VO - VE ✔

Scenario Domain-specific ✔ ✔ ✔ ✔ ✔ ✔ ✔
General ✔ ✔ ✔ ✔

Concurrency	
Serial ✔ ✔ ✔ ✔ ✔ ✔

Parallel ✔ ✔ ✔ ✔ ✔

Logic Simple ✔ ✔ ✔ ✔ ✔
Complex ✔ ✔ ✔ ✔ ✔ ✔

environments (e.g., walls, grounds), and virtual environments (e.g.,
virtual surfaces). Environments provide a broader spatial context
in which the interaction is situated than objects. Any AR interac-
tion can be decomposed into basic interactions happening between
two subjects of the same or different type(s). Removing meaning-
less combinations of two subjects, we list seven combinations in
Table 1 within the subject dimension. Most existing works focus
on authoring the interactions of real or virtual objects. In these
works, real environments mainly serve as a contextual background
[21, 22, 40], which does not involve direct interactions with other
AR contents. Our system aims to enable both the environments and
objects with direct interaction capacities, such as a human evading
moving virtual walls, and a ball falling to the ground and bouncing
up.

Scenario. AR interactions are designed to meet the needs of
different usage scenarios. Most of the existing works explore AR
interactions in certain domains of usage scenarios by adopting a
certain type of AR contents, such as context-aware human-centered
behavior [40], spatially-aware object interactions [48], freehand
interactions [39], toy-based interactions [52], mobile AR prototypes
[21], etc. Interactions in more general usage scenarios such as proto-
typing AR experience [22] and tangible AR [19, 25] involve broader
paradigms. Our system aims to support general interactions (i.e.,
spatial, hand-based, exterior, and geometric interactions) of broader
types of AR contents.

Concurrency. From the time perspective, AR interactions can
happen serially or parallelly. In the serial mode, one interaction
follows the completion of its previous one. This sequential nature
ensures that each interaction receives the necessary attention be-
fore moving on to the next. On the other hand, in the parallel mode,
AR interactions can occur concurrently, enabling multiple inter-
actions to occur simultaneously. This parallelism leads to a more
dynamic and interactive AR experience. The works relying on a
trigger-action workflow [39, 40, 48, 52] usually support serial in-
teractions. Video-flow-based prototyping [21, 22, 44] can support
simultaneous interactions ideally, but they mainly aim to author
a series of interaction flows along the video flow. We design our
system to program interactive behaviors for individual AR contents
so that the interactions can happen independently, enabling both
serial and parallel patterns.

Logic. An AR interaction can encompass a range of logic flows,
varying from simple to complex. In simpler cases, the logic flow
may involve straightforward and linear sequences of steps such as

a single trigger-action interaction [39, 48, 52]. However, AR interac-
tions can also feature complex logic flows incorporating branching,
loops, iterations, time control, and multiple conditional statements.
For instance, an AR interaction might involve recognizing differ-
ent human behaviors [40], each triggering a specific set of effects.
We want to support programming interactions with complex logic
controls.

4 SYSTEM DESIGN
4.1 Overview
To support the programming of the general AR interactions dis-
cussed above, we propose ProInterAR, a block-based visual program-
ming system implemented in an integrated tablet and AR-HMD
interface. An iPad Air 4 and a Microsoft HoloLens 2 are used to
deploy the application. The presented ideas can be easily ported
to other combinations of tablets (e.g., Microsoft Surface Pro) and
AR-HMD devices (e.g., Apple Vision Pro). ProInterAR consists of
three main components: a scene creation UI (Section 4.2), a visual
programming UI (Section 4.3), and an execution and controlling UI
(Section 4.4). We design our visual programming UI in the tablet,
mainly considering the hand fatigue issue of immersive program-
ming. The system is designed based on the imperative programming
concept [12]. We will first introduce these three components and
UIs and then use an example (Section 4.5) to illustrate the program-
ming workflow.

4.2 Scene Creation UI
Interactive Content Selection/Creation. To start developing
an AR application, the creator first needs to create the contents
to be interacted with. Based on the design scope discussed above,
we allow users to create AR contents from four categories: real-
world objects, real-world environments, virtual objects, and virtual
environments.

Real-world Objects. A real-world object needs to be tracked with
a 6-DoF pose for interaction. Since the limited computation capac-
ity of HoloLens 2 does not support real-time estimation of a 3D
bounding box of arbitrary objects, we adopt an interactive approach
for manually initiating an object’s bounding box. The user drags
a 3D bounding box to a real-world object of interest and adjusts
its volume and direction using pinch gestures (Figure 2(a)). Once
finished, a real-world object with its position and orientation is
created in the system and passed to the programming UI for access.
Since the user can manipulate the real-world object by hand, we
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a b c d

e f g h

Figure 2: Create or specify AR contents for interaction. (a)
Create a bounding box to specify a real-world object. (b)-(c)
Create a plane using a palm gesture to specify a planar real-
world environment. (d) Create multiple planes and group
them together to specify a compound real-world environ-
ment. (e)-(f) Select a part of the detected spatial mesh to
specify a curved-surfaced or customized real-world environ-
ment. (g) The object library contains various commonly used
virtual contents. (h) Drag and drop a virtual model from the
library and transform it using hand gestures.

track its dynamic 6-DoF pose according to the hand pose due to the
relative rest state between the object and the hand. Two specific
types of real-world objects, i.e., hands and head, are also in the con-
tent lists for users to select in our system. We extract the positions
and orientations of hand objects (i.e., left-hand palm, right-hand
palm, and 15-finger joints) and the head object from the HoloLens.

Real-world Environments. Different from real-world objects, real-
world environments usually stay static. So, we only need to specify
their initial states without tracking them later. Three techniques are
supported to create a real-world environment for interaction. First,
we allow users to create a plane using a hand palm gesture (Figure
2(b)) and transform it using a pinch gesture to overlay it with a
physical environment (Figure 2(c)). It can turn a planar physical
environment into an interactable object in the system. Second,
we allow users to create multiple planes and group them to form
a compound environment object (Figure 2(d)). It is applicable to
the physical environment with multiple planes (e.g., a chair with
vertical and horizontal planes). Third, for curved surfaces or other
customized environments, users can use a hand-pointing gesture
to select a part of a spatial mesh detected by HoloLens 2 (Figure
2(e)-(f)). Using these three techniques, an environment is specified
and passed to the programming UI for selection.

Virtual Objects.We provide an object library that contains mul-
tiple commonly used virtual elements in AR applications (Figure
2(g)). This library can be easily expanded based on target applica-
tions. The user can drag and drop a virtual object to the AR scene
and change its size, position, and orientation using a pinch gesture
(Figure 2(h)). In addition, we allow users to import their customized
virtual objects by uploading them from the interface of the tablet
browser.

Virtual Environments. The user can use a similar method to
real-world environment creation to create a virtual environment,
or drag-and-drop an argument value like box zone to work as a
virtual environment. The creation and deletion of all the contents
are updated in real-time in the programming UI and the AR scene.

a b c

d e f

Figure 3: Create five types of argument values: (a) Create a
small bounding box to specify a certain position, (b) Create a
large bounding box to specify a certain box zone, (c) Create a
plane to specify a certain plane zone, (d) Create an arrow to
specify a certain axis, and (e) Create a text proxy to specify a
certain text. (f) The argument option field of a block in the
programming UI is updated when an “Axis1” is created.

Argument Value Creation. Besides the contents to be inter-
actedwith, some argument values also need to be created in advance
in the AR scene and passed to blocks for further interaction. For
example, when the user wants to program the behavior of a car
rotating around a customized axis or the effect of a mole to appear
at a random location within a customized zone in a whack-a-mole
game, the axis and the zone need to be first created in the scene
and then shown in the block argument field for specification. Our
system supports the creation of five types of argument values (i.e.,
position, box zone, plane zone, axis, and text), as illustrated in Fig-
ure 3. The user can create a small bouncing box that indicates a
certain position (Figure 3(a)), a large bounding box indicating a
certain box zone (Figure 3(b)), a plane representing a certain plane
zone (Figure 3(c)), an arrow that represents a certain axis (Figure
3(d)), and a certain text (Figure 3(e)). Once an argument value is
created, it will be passed to the argument option field for selection
(Figure 3(f)).

4.3 Visual Programming UI
The UI running on the tablet provides a visual programming inter-
face to specify the AR interactions of the created contents. Based
on Scratch [32], we design the ProInterAR programming interface
(Figure 4(a)). During the programming phase, the user can hold and
operate on the tablet while wearing the AR-HMD to view the AR
scene (Figure 4(c)). The UI consists of three main components: a
block list, a block-stack field, and a content-selection list (Figure 4).
The content-selection list shows all the created AR contents in the
AR scene. Once an AR content is created, the user can rename it in
this field.

Block Categories. According to the coding contents, the blocks
are divided into the following nine categories, as illustrated in
Figure 5 with different colors.We re-design the categories of motion,
looks, and sensing to make them applicable for AR interactions
in 3D space. We propose a new category “Hand” to enable hand-
based interactions. The other categories are directly adopted from
Scratch.
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c

d

Content-selection ListBlock List Block-stack Field

a b

Figure 4: The visual programming UI and walk-through of ProInterAR. The programming UI (a) consists of a block list, a
block-stack field, and a content-selection list. The user can drag the blocks from the block list and drop and stack them in the
block-stack field. The created AR contents are shown in the content-selection list for selection. The user can press the green
flag and the red button to execute and stop the program, respectively. The walk-through of a “3D Whack a Mole” example: The
user first creates AR contents, which are shown in the content-selection list on the tablet UI (a). The user then stacks the blocks
(c) for the corresponding contents: the random occurrence blocks for the mole object in the block-stack field (a), the hand grasp
blocks ((b)-bottom) and collision detection blocks ((b)-up) for the hammer object, and the collision condition blocks for the
balloon, cup, and book objects. The user views and tests the program by grasping the hammer to hit the mole and avoiding
hitting other objects from the AR-HMD view (d).

• Motion. We design the motion blocks (Figure 5(a)) to enable
spatial interactions: move, rotate, go to, glide to, face, set
x/y/z to, if collide and bounce, obtaining content position,
direction, distance to another content, and x/y/z position.
Some of the blocks have argument fields to be input or se-
lected. These individual motion blocks can be singly used or
combined to cover most of the common spatial interactions.

• Looks. We provide the size-related (i.e., change or set size),
presence-controlling (i.e., show or hide), and text (i.e., set
text with color) blocks (Figure 5(b)) to control the appearance
change.

• Hand. We design the blocks of grasping real or virtual ob-
jects, objects going to a certain hand finger joint or following
hand, and performing certain hand gestures (Figure 5(c)) for
hand-based interactions.

• Sound.Wedesign the sound blocks of playing/stopping sounds
and control the sound volume (Figure 5(d)).

• Control. We keep most of the controlling blocks (Figure 5(e))
from Scratch for achieving repetitions, conditionals, loops,
iterations, and time waiting .

• Events.We keep the event blocks (Figure 5(f)) from Scratch
to trigger the start of the program and enable event listening
using broadcasting functions.

• Sensing. We design four sensing blocks for detecting the
conditions in AR scenes: collision, position equaling, rotation
equaling, and relative position layout (Figure 5(g)).

• Variables.We also allow users to create their own variables,
set or change them, and hide/show their presence in the AR
scene (Figure 5(h)).

• Operators. We keep most of the operator blocks (Figure 5(i))
from Scratch to deal with mathematical operations.

• My Blocks. We also support defining functions with num-
bers, text, and booleans as parameters by stacking blocks,
which can further help users to quickly implement similar
functionalities.

Stacking Blocks. For each selected content, the user drags,
drops, and stacks the blocks from the block list to program the
interaction. According to the block shapes, the blocks can be stacked
or filled one by one. Multiple stacked block groups can be created
to run independently for each content.

4.4 Execution and Controlling UI
After programming the interactions, the user can execute the pro-
gram by clicking the green flag in the UI (Figure 4), and then test
the program by viewing the effects, manipulating the contents, and
performing interactions with AR-HMD. The user can return to
the programming UI to update the blocks and view the updated
changes at any time.

4.5 Programming Walk-through
Here, we use an example to show the ProInterAR workflow (Figure
4). A user, Fred, wants to create an AR game, “3D Whack a Mole”:
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Figure 5: The nine block categories of ProInterAR: (a) Motion, (b) Looks, (c) Hand, (d) Sound, (e) Control, (f) Events, (g) Sensing,
(h) Variables, and (i) Operators.

The mole will appear at a random location for a while and disappear
in a 3D zone, repeatedly. The player must grasp a hammer and hold
it to hit the mole. Every time he hits the mole, the score will be
added by one. During the process, three objects are in the scene: a
physical cup and book on the desk, and a bunch of virtual balloons in
mid-air. If the hammer hits these objects, the score will be deducted
by five. So, the player should try to hit the mole but avoid hitting
the objects.

To start, Fred creates five objects in the AR scene: a virtual mole,
a virtual hammer, a bunch of virtual balloons, a physical cup, and a
physical book. For virtual objects, Fred directly drags them from
the object library. For the physical cup and book, Fred presses the
bounding box creation button and drags the boxes to the positions of
the cup and book, and then adjusts their volumes, respectively. The
objects are shown in the content-selection list in the programming
UI correspondingly. Besides the objects, a box zone needs to be
created to work as an active area of the mole. So, Fred presses the
“add box zone” button and drags the box, and adjusts its volume
above the desktop.

Switching to the programming UI (Figure 4(a)(c)), Fred first adds
a new variable named “Score” to calculate the game score. It will
show in the AR scene. Then Fred stacks a group of blocks to the
mole object: controlling the mole to appear at a random location
in the created box zone (Figure 4(a)). For the hammer object, Fred
stacks the hand-grasping blocks to indicate that when the player
grasps the hammer, it will follow the player’s hand (Figure 4(b)-
bottom), and the blocks of collision detection with the mole to
increase the score (Figure 4(b)-top). Finally, for the cup, book, and
balloon, Fred builds the same block groups that control the scores to

be deducted by five when the hammer hits them. It can be achieved
by copying and pasting the block group from one object to another.

After the scene creation and programming phases, Fred can
execute the program by clicking the green flag in the programming
UI, and then a mole starts to appear at random locations repeatedly.
Fred grasps the hammer from the desktop, and the hammer follows
his hand ((Figure 4(d)). To increase the score, he hits the mole with
the hammer and avoids hitting the objects. When the hammer
touches the other objects, the score decreases by five.

5 IMPLEMENTATION
We build ProInterAR in an integrated tablet and AR-HMD interface.
The programming UI running on the tablet browser is implemented
using JavaScript based on the React framework [35]. The AR inter-
face running on the AR-HMD is developed in Unity with MRTK
[23] and deployed to the HoloLens 2. To connect the programming
web UI in the tablet and the AR interface in HoloLens 2, we build a
Node.js server and make the two clients communicate with each
other via the server based on WebSocket protocol [7]. Specifically,
due to the limited computation capacity of HoloLens 2, we run the
server on a PC instead of the HoloLens. Then, we open the two
clients on the tablet browser and the HoloLens, respectively, both of
which are wirelessly connected to the server in the same Local Area
Network (LAN) to achieve real-time communication. The server
works as a transfer station that sends a message from one client to
another. The message could be a block of data in the programming
UI or information of objects and argument values in the AR scene.
For the block data, we construct 11-dimension data consisting of
a unique thread ID, task name (i.e., action, condition, get value),
block name, source object, target object, axis, value, duration, and
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Figure 6: Applications of ProInterAR: (a) AR game, (b) AR
teaching, (c) Sequential animation, (d) AR information visu-
alization.

relative position. When any block in the web UI is executed, the
tablet client will send a message in the format of the constructed
data to the Hololens client via the server forward. After receiving
the message, the Hololens will directly execute the corresponding
action of the object if the task name in the message is “action”. If
the task is “condition” or “get value”, the HoloLens must send a
detection result or obtained value back to the tablet. Besides the
feedback data for a block, when the objects and argument values
are newly created in the AR scene, it will also send such data to the
tablet client to update the object and argument lists in the web UI.

For the condition detection among objects, we use the collision
detection method in Unity. For hand/head and hand grasp detection,
we track the hand/head pose in real-time, and detect the grasping
gesture by checking if the hand pose remains unchanged over
a duration. When the hand pose starts to change, the grasp is
detected as ending. The other hand gestures are detected using
similar methods. For physical object tracking, we use the relative
pose between the specified 3D bounding box and the hand to update
the 3D object pose with respect to the hand pose in real time.

6 APPLICATION SCENARIOS
6.1 AR Game
AR game is one of the most popular AR applications to the public
community. Using ProInterAR, creators can design and develop their
own interactive AR games, which range from simple and casual
experiences to more complex and immersive gameplay. Here, we
use an instrument-playing game in AR to show one application
scenario of ProInterAR. A creator wants to build AR instruments
for a personal band using multiple physical objects in daily life
and patting these instruments by hand to play different sounds
(Figure 6(a)). To achieve it, the creator can create bounding boxes
for the physical contents (e.g., chairs and table planes). Then, in
the programming UI, the creator stacks the blocks for these ob-
jects so that when they collide with hands, they will play certain
instrument sounds. To play it, the user pats the objects by hand and
form a music sequence. For more complex interactions, the creator
can create a virtual keyboard on the desk plane for collision with
different fingers.

6.2 AR Teaching
AR technology in educational process can enhance and transform
the way students learn and engage with educational contents [18].
Teachers and students can build their own AR learning and experi-
ment contents using ProInterAR. For example, when teaching the

properties of the magnetic force in a physics class, a teacher wants
to demonstrate the different movements between bar magnets, a
metal cup, and iron screws, but only has a cup at hand. He/she im-
ports the virtual bar magnets and iron screws to the AR scene, and
programs the motions of these objects when the hand grasping one
bar magnet and approaching other objects: the other bar magnet
with the same pole will move away, the screws will be attracted
closely and follow the magnet, and the bar magnet will be attracted
to the cup surface (Figure 6(b)).

6.3 Sequential Animation
Animation is another popularly used component in general AR
applications. ProInterAR is capable of creating animations with
various DoFs. Here, we show the creation of a sequential animation
built by ProInterAR, which is not easy to create using existing AR
authoring tools [39, 48] due to the sequential triggering workflow.
For example, a creator aims to create a plant growing animation
(Figure 6(c)): a virtual plant is planted in a physical flower pot, and
it will grow with an increasing size. Once it changes to a large size,
it will turn to blossom and yield fruit, and the fruit will fall to the
ground. Using ProInterAR, the creator first drags a virtual plant to
the pot and a flower and fruit to the plant and sets them hidden at
the beginning. Then, in the programming interface, the creator sets
the plant to change size and a condition that when the size reaches
a threshold, the flower will show. The flowers will also change their
sizes. When their sizes reach a threshold, the fruit will show up for
a while, and then fall to the ground.

6.4 AR Information Visualization
AR information visualization provides a possibility to present and
display data, information, and visualization in a spatial and interac-
tive manner. It combines virtual and real-world environments to
enhance the understanding and exploration of data. Our system
can also benefit from easy creation of AR information visualiza-
tion applications. For example, a sales department in a company is
exploring the sales volumes of several types of drinks. When one
drink is placed on the table and the user clicks on the table or the
drink, it will show different sales charts. When another drink is
placed close to it, it will show the comparison sales chart (Figure
6(d)).

7 USABILITY STUDIES
To evaluate the usefulness and expressiveness of ProInterAR, we
conducted two separate usability studies, including an individual
evaluation (Section 7.1) for evaluating the performance of individual
users in a single session and a long-session evaluation (Section 7.2)
for evaluating the continuous performance of two users across five
days.

7.1 Study 1: Individual Evaluation
Participants. We recruited 12 participants (8 males and 4 females,
aged 10-34, M = 24, SD = 14). Ten were university students with
backgrounds of design (U7-8), human-computer interaction (U1,
U3, U6), computer graphics and vision (U2, U4, U5), electronic en-
gineering (U9), and industrial engineering (U10). One was a child
(U11) in the fifth grade of primary school, and one was a teenager
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Figure 7: A gallery of the selected programmed applications from Study 1. (a) AR game “flick football”: tap to shoot the ball and
hit the goalkeeper. (b) AR animation: throw a ball to attract a dog coming close. (c) AR fishing game: hold a rod to catch a fish
from the pool and leave it on the ground. (d) AR archery game: use a pinch gesture to release an arrow: the closer hitting the
target, the higher the score gets. (e) AR game: press buttons to control the car. When hitting gold coins or the cup, the score will
increase or game over. (f) AR instruction: instruct to assemble machine parts in a specified order. (g) Interaction prototyping
for AR tourism: touch the wall to call up a virtual narrator to introduce different paintings. (h) IoT function design: move a cup
to a certain position to light up the lamp. (i) AR navigation: press a target on a map and follow the arrow to navigate there. (j)
AR Q&A game: press left or right to answer questions for level up. (k) AR try-on: pat virtual shoes and try on them. (i) AR
measurement: use hand distance to measure edge length. Please refer to the supplemental materials for detailed descriptions
and corresponding programs.

(U12) in the second grade of secondary school. Four (U1, U7, U8,
U11) had used AR applications (e.g., Pokémon GO [28], AR Mea-
sure, Just A Line, AR filters, IKEA AR). Half of the participants
had strong programming experience (U1-6 with self-reported 4-5
points on a 5-point scale, from 1 = no experience to 5 = strong ex-
perience), and the remaining had limited programming experience
(U7-12 with self-reported 1-3 points). Four participants (U1, U6, U7,
U11, U12) had used visual programming tools (e.g., Scratch, Unreal
Blueprints) before. All participants had no AR application creation
experience except U1 and U3, who had utilized Unity to create AR
teleconferencing and gaming apps. They mainly were novice AR
creators, which were our target users. Please note that our current
in-lab studies suffer from several limitations such as the selected
pool of participants and the small participant samples. Despite our

efforts to diversify the participants’ backgrounds, the majority of
them consist of college students, which may introduce potential
biases. We would like to emphasize that our studies primarily aim
to provide a preliminary evaluation on the user experience of our
system. In the future, we will strive to test our system with a more
diverse range of participants in field studies.

Tasks and Procedure.At the beginning of the study, we showed
the participants the UIs and workflow of ProInterAR. The partici-
pants learned how to use our system through a simple interactive
example as a tutorial: “uses two buttons to control the movement
of a virtual cartoon character, which triggers a text box display
when it hits a real cup on the table.” We started the introduction
of ProInterAR with simple conditional and motion statements to
guide the participants to realize the required functionality in the
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tutorial, and we answered their questions in detail when they did
not understand. We took a step-by-step explanation approach for
the participants with little programming experience to familiarize
them with ProInterAR. After the tutorial, we asked each participant
to complete the creation of two AR applications, one game-related
and the other non-game-related, and encouraged them to use real
objects/environments and virtual objects/environments as much
as possible. The participants were asked to think about their tar-
get interaction results roughly in advance. During the study, we
discussed with them to further refine their target interactions by
informing them about what our curernt implementation of ProIn-
terAR could and could not achieve. There was a 5-minute break
between designing the two applications. After completing each pro-
gram, each participant experienced and tested the AR applications
they designed and developed. At the end of the study, we asked the
participants to fill in a System Usability Scale (SUS) questionnaire
on a 5-point scale (1 = strongly disagree to 5 = strongly agree), as
well as a NASA-TLX questionnaire on a 5-point scale (the lower,
the better). In addition, we conducted a small-scale interview with
them to discuss their user experience. The interviews and interac-
tion process were audio-recorded and later transcribed with their
agreement by filling out an informed consent form. We encouraged
them to express their positive and negative opinions. Each study
took about 50-70 minutes. Each participant was compensated with
a 13-USD gifted card.

Results. Each application took about 25-40 minutes for the
participants to complete. They spent most of the time (i.e., about
20-30 minutes) iteratively building AR scenes, programing the be-
haviors, and testing the programs, and then about 5-10 minutes
playing or interacting with each application. A total of 22 AR ap-
plications were created by the participants (Figure 7) since the
child and teenager participants each only created one application.
These results covered extensive application scenarios, including
AR games, AR animation, AR instruments and tutorials, AR naviga-
tion, AR shopping, interaction prototyping, IoT function design, AR
measurement, AR fitness, etc. For game-related applications, some
participants transformed classic 2D games into 3D AR versions by
replacing traditional keyboard and mouse controls with hand inter-
action (U4, U9, U10). Some enjoyed designing games that involved
virtual and real-world interactions by incorporating the surround-
ing environment or objects (U1-3, U5, U7-9, U11). Some preferred
utilizing expansive real spaces to design hide-and-seek games (U11).
For non-game-related applications, most participants tended to re-
alize the convenient experiences that AR could bring based on their
own imagination (U1-2, U5-7, U9). A few participants wanted to
reenact certain real-life moments, even if they involved somewhat
unrealistic animations (U4). Some utilized our system as a tool for
prototyping purposes (U3, U8, U10). The applications include all
the types of contents supported in our system: real objects (e.g.,
cup, hand, hand finger), real environments (e.g., wall plane, table
surface), virtual objects (e.g., fishing rod, bow and arrow, virtual dog
and character), and virtual environment (e.g., virtual wall). The in-
teractions include spatial movements of a single object (e.g., ball and
character moving), collisions between two objects or objects and
environments (e.g., hand-table, car-obstacle), appearance change
(e.g., arrow show and hide, text color change), gestural interactions
(e.g., hand grasping, pinch gesture), context-aware events (e.g., state
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Figure 8: SUS (Top) and NASA-TLX (Bottom) score distribu-
tions. The question description in SUS is the key points from
the full SUS questions. For the scores of SUS, the higher, the
better. For the scores of NASA-TLX, the lower, the better.

detection to trigger IoT functions), and audio effects (e.g., playing
music). In terms of programming, we found that hand-object colli-
sion detection was one of the most popular triggering conditions,
and the participants were very comfortable engaging in interactions
with hand touches regardless of whether the target objects were
virtual or real. Moreover, they preferred collision detection even for
conditional judgments without involving their hands, such as de-
termining whether two objects reached the same location, and the
participants usually used collision detection rather than distance or
position detection. One possible explanation is that collisions are
more intuitive and easier to understand. Variables were frequently
used because they could serve as both scoreboards in games and
state controllers in programming and also helped achieve commu-
nication across objects similar to broadcasting. Multiple arguments
(e.g., position and box zones, user-defined axes) were created and
passed to the block field. Various controls like loops, repetition,
condition judgments, broadcasting, and time waiting were used to
script complex interaction paradigms.

The SUS scores rated by the participants were overall good, and
Figure 8(Top) shows the rating distribution of every SUS question.
Most participants thought our system to be easy to use (Q3) with
workflows and programming interfaces designed to be simple and
easy to understand (Q2), and also intuitive to operate (Q8). The
system is also very consistent (Q6), and the integration of features is
great (Q5). They thought that in most scenarios where they wanted
to easily and quickly realize and experience the target effect in situ,
our system could help a lot. They also believed that they would
frequently use our system both indoors and outdoors (Q1). All the
participants were confident in using our system (Q9), except one
participant (U4), who was affected by her unfamiliarity with operat-
ing the Hololens device, and they were satisfied with the results. At
the same time, the participants with rich programming experience
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also raised some doubts. They thought that perhaps their program-
ming experience allowed them to familiarize themselves with our
system very quickly, but they were conservative and thought there
was still a learning curve for other users (Q7). Some participants
believed that our system had its own rules, requiring additional
learning regardless of the user’s programming experience (Q10).
One participant (U8) with little programming experience felt that it
was necessary to have a technical person to guide them through the
system initially. Two participants (U11-12) with prior experience
using Scratch found it easy to learn (Q4). Figure 8(Bottom) shows
the NASA-TLX scores. We found that most of the participants, ex-
cept for two participants (U6, U8) with little AR-HMD experience,
perceived the workload of our system to be low.

To analyze the qualitative feedback during the study and the
interviews, we conducted a thematic analysis. Two of the authors
coded the transcribed documents by systematically identifying
and labeling them and then made a codebook. Then, the authors
grouped related codes together to form themes, and reviewed and
refined them by revisiting the coded data. Six main themes emerged
as follows.

T1: Overall User Experience (All). The participants felt that ProInt-
erARwas overall easy to learn or/and use, friendly to beginners, and
provided a great understanding of coding concepts. Some partici-
pants (U1, U5-6, U9) mentioned the convenience of instant testing
after programming since they could “find problems immediately
and adjust the blocks to see the updated results in real-time (U1).” A
participant with an interaction design background (U8) said, “al-
though my programming experience is limited, I think your system
still facilitates me by including a wide variety of interactions between
real and virtual contents.” His programmed application in Figure 7(c)
contains a variety of programming elements (e.g., loop, condition)
that he had not coded with before. U7 commented that “it is simple
and easy, which is beyond my expectation.” They also highlighted
areas for improvement, such as providing sound effects during
operations.

T2: Advantages of Combining Tablet Interface and AR-HMD (U2,
U4-5, U7-9, U11). The participants mentioned that the tablet inter-
face was similar to daily usage, less distracting, and allowed for
precise and familiar operation habits. The AR-HMD provided an
immersive and flexible environment for in-situ authoring. The par-
ticipants also appreciated the convenience and portability of such
an integrated interface, as “the mobile setup lets me program any-
where without relying on any desktop computer (U4).” U7 with the
design background mentioned that “it is applicable to mobile scenes
where I can design the concepts based on a surrounding environment.
Programming on the tablet also streamlines the design procedure with
convenient and rapid operations.” The child participant with Scratch
experience (U11) liked the AR authoring feature [42] since it can
“play 3D interactions and turn the 2D elements in Scratch to the 3D
elements in the physical world.” The markerless object tracking was
also appreciated by the participants, as U9 said “it supports tracking
objects with different volumes.”

T3: Similarities and Differences with Traditional Coding (U1-2,
U4-6, U9). This theme mainly comes from the participants with a
programming background. They noted that ProInterAR shared some
similarities in terms of logic with traditional coding. However, they

also emphasized the differences, such as the graphical representa-
tion of coding logic, the use of pre-defined functions, and the ease of
getting started with ProInterAR. U1 said our system “turning coding
logic into graphical elements is easy to remember. Graphical memory
helps quickly construct the whole game logic instead of suffering from
coding format issues. With self-contained blocks, users just need to
stack the blocks.” As a programming beginner, U9 commented that
our interface was direct and intuitive; especially with object-centric
programming, she can “quickly create connections between the phys-
ical objects and environments to the programming UI.” She especially
liked the block enclosing design (e.g., the space within the if-else
blocks) to learn the coding functions.

T4: Application Scenarios (U1-2, U5, U9-12). The participants be-
lieved ProInterAR had great generalizability to various application
scenarios. They mentioned its usefulness in designing games, pro-
totyping, and implementing complex logic in any scene. Specific
scenarios mentioned include large-scale playground design, ed-
ucational purposes for kids, and enabling real objects with IoT
functions. U10 expected that “it can help kids learn coding concepts,
how to begin programming, and they will be interesting to start from
the objects around them.” The kid participant (U11) found the tool
interesting and useful to allow her to understand complex coding
logic intuitively. One participant (U5) with some experience in AR
prototyping stated, “ProInterAR supports the implementation of a
wide range of common interaction functions. I believe it can cover the
functions of multiple toolkits I have used before for wider usage.”

T5: Learning Curve (U2-U3, U9, U11). Some participants men-
tioned that it became easier for them to use ProInterAR when they
were familiar with it, which usually came with the creation of their
second application. The kid participant (U11) needed instruction
at the beginning, mainly for the interactions from the AR-HMD,
and later she could explore features on her own. U2 and U7 also
mentioned that it became very easy when they learned all the sys-
tem’s functions, including various block functions. It indicates that
there is a slight learning curve, especially for the participants with
limited programming backgrounds.

T6: Limitations and Challenges (U1-3, U4, U11). The participants
also mentioned certain limitations and challenges. These include
limited debugging functions, confusion when dealing with a large
number of objects, difficulty in searching for blocks, and the heavy
weight of AR-HMD. Some limitations were inherited from Scratch,
like U1 with rich coding experience said, “since most of the blocks
can only control selected objects, it is necessary to use the broadcast
function to make cascading effects between different objects, which
is a bit cumbersome and can be very error-prone when the program
becomes complex, and the system’s debugging capabilities are very
limited.” We will improve our block copy-and-paste function to
change block arguments more intelligently and include the debug-
ging features in the future. U3, who had designed VR/AR projects,
said, “the creation of a character’s smooth motion path requires me to
specify multiple individual points, which is a little cumbersome.” This
might be improved by including a user-defined curve for argument
creation.
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P1:	Office	Assistant	Application P2:	Adventure	Game

Day

1 (a)	Familiarize	with	coding	concept,	programming	UI,	and	HoloLens	
interactions.

(a)	Where	he	grasps and moves the virtual	key to the metallic square, the instruction shows above left hand
leading	to	the	position of the treasure.

2 (b)	When	she	sits	down,	show	a	water	drop	above	the	cup	to	remind	
drinking	water. (b)	When he arrives near the tree, a monster	appears	and	follows	him	upon	discovering	the	treasure.

3
(c)	When	she	sits	down	and	watches	screen,	show	a	text	and	character	to	
remind	taking	a	break.	
(d)		When	she	leaves,	the	program	resets	to	the	initial	state.

(c)	A	trap	to	eliminate	the	monster:	he	guides	the	monster	to	the	trap’s	location	and	physically	activates	it	by	
touching	the	real	environment.

4

(e)	Set	timewait to	(b)	and	(c).
(f)	Enhance	a	physical	trash	bin,	drag	the	water	drops	and	time	remindings
to	bin	to	delete	and	reset	timers.
(g)	When	she	comes/leaves,	play	a	sound	to	remind clocking	in/out.

(d)	He	obtains	the	treasure	on the treetop and	acquires	a	light	sabe by grasping it.	
(e)	Two	new	monsters	appear.
(f)	Three	life	points	are display	above his	right hand.

5
(h)	Set	an	interactive	virtual	pet	on	the	desktop:	when	pat	the	pet,	it	speaks	
encouraging	words;	when	perform	a	pinch	gesture,	show	heart	moving	
from the finger to the pet. When the pet hits the heart, it shakes.

(g)	Endow	the	monsters	in	(e)	one	with	close-range	attacks	and	the	other	with	long-range attacks.
(h)	He	uses	acquired light	saber to	attack	each	monster	twice	and	avoids	their	attacks.	Hit	by	them	will	lose	one	
life	point.
(i)	When	eliminate	both	monsters,	game	over.

Figure 9: The top and bottom rows respectively show intermediate result snapshots of two long-session applications and
descriptions for each day.

7.2 Study 2: Long-session Evaluation
From the first study, we found that ProInterAR could help users
create high-quality AR applications for various usages. However,
from the emerging theme T5 (learning curve), we found that it
might bring a more natural experience when users continuously
use ProInterAR, especially for users without coding experience. To
investigate the learning effects further, we conducted a long-session
evaluation. To understand the learning effects comprehensively and
figure out the ceiling of our system, we consider both novice and
professional AR creators in this study.

Participants. Two university students (P1: female aged 27, P2:
male aged 28) were invited for a five-day evaluation. They did
not participate in Study 1 or use our system before. P1 had no
AR creation experience before, while P2 had created several AR
applications, including anAR-guided training system, anAR-guided
robot control system, and an AR game using Unity and Unreal ITK.
P1 had no programming experience but P2 had an extensive coding
background. Both of them had not used any visual programming
tools before.

Tasks and Procedure. Each participant was asked to create
an AR application using ProInterAR with a bottom-up approach,
starting from an initial idea and incrementing on it gradually to form
a complete application. The session took about 30 minutes each day.
Before starting the tasks, the participants were instructed to use
ProInterAR through the same example in Study 1. After each day’s
task, we had small-scale interviews with them to gather feedback.

Results. P1 and P2 designed an office assistant application and
an adventure game, respectively. Figure 9 shows their designed ap-
plications in each day. Both participants expressed high satisfaction
with the final outcome, and their applications included all the types
of contents supported by our system. Below we will show some
details and findings from their interviews.

P1 thought the block-based visual programming UI to be very
user-friendly, “Although I don’t fully understand the specific details

within each code block, I find it easy to understand the approach
where different functions have distinct shapes, and programming is
done by matching these shapes together.” And P1 commented that
“I find it very useful to copy and paste code by directly dragging it
onto different objects.” Furthermore, P1 mentioned that AR added
emotional significance to real-world objects, “A water cup, for ex-
ample, doesn’t have much life to it, but by adding a cute virtual water
droplet on it, it creates a stronger emotional connection with me. It
might even make me more inclined to drink water on time every day.”
Overall, P1 believed ProInterAR would be helpful for her everyday
creativity, “I feel like I can use this tool to create anytime, anywhere.
Sometimes I cannot bring my inspiration home, but with this tool, I
can immediately implement and experience it when I have a sudden
burst of inspiration outdoors.” During the study, we observed some
phenomena that indicated P1’s learning curve. Initially, she com-
plained about our system’s inability to provide more information
about the code blocks. She desired concise textual explanations
when hovering her finger over a code block, which could be added
as a future feature, especially for beginners. After implementing
some simple triggering effects, she became more proficient in using
commonly used code blocks. However, when attempting to com-
bine them into a system and continue adding functionality while
ensuring robustness, she found that programming logic became the
primary limiting factor for her, “Although I am not going to use more
complex code blocks, I now need to consider the logical relationships
between multiple variables and objects, which confuses me.” After
the study, P1 was thrilled with the AR application she designed and
expressed, “I am extremely proud to have created such an application.
I have realized that the principles behind seemingly simple tools in
everyday life are actually quite complex, requiring consideration of
various unexpected situations. Now I am filled with confidence in
learning programming.”

We were surprised that P2 quickly became proficient in using
ProInterAR almost without our assistance. He commented that the
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programming mechanism for each object in the system was very
similar to scripting in Unity, thus allowing him to quickly adapt.
He also felt ProInterAR to be very practical, “When designing AR
applications before, I had to place the virtual assets in the real world
and record their position and rotation information first. Then, I would
develop applications using Unity. Finally, I would deploy the appli-
cation onto the AR-HMD and return to my target scene for testing.
During the development process, I could not truly observe how these
virtual assets interacted in the real world, thus hindering my creativ-
ity. Additionally, whenever I needed to add something new, I had to
repeat the above process, which was quite cumbersome. In contrast,
ProInterAR enables me to program directly in the scene, add virtual
assets whenever I want, and test them on the spot. It’s truly fantastic.”
He believed that the combination of a tablet and AR-HMD was
a great compromise, “Directly programming within an AR-HMD
would be a disaster. The controls and clarity would be major issues.
Desktop-based development for AR applications separates the creation
and development process, which cannot get real-time feedback. A
portable device like the tablet provides a good balance of precise con-
trol, display clarity, and support for mobile usage.” Throughout the
study, P2 consistently expressed how powerful our ProInterAR was,
“I notice that the system has built-in code blocks like ‘collide,’ ‘face,’
‘move,’ ‘show,’ ‘hide,’ etc. Implementing such functionalities with real
code is not easy and time-consuming. Now, I can conveniently use
them and focus on designing the applications I want to create. This
significantly reduces time overhead and, in my opinion, makes it more
user-friendly for those who are inexperienced.” After the study, we
discussed further insights about ProInterAR with P2. He mentioned,
“I believe this block-based visual programming is highly suitable for
beginners. The stacking of blocks and the different shapes and text de-
scriptions on them make it easier for the inexperienced to understand.”
Furthermore, he also mentioned some limitations of ProInterAR.
He pointed out that the current ProInterAR had limited capabilities
for inter-object communication. It could only be achieved through
features like Broadcast and Variable, which resulted in a significant
amount of communication-related code in complex AR applications.
He stated, “ProInterAR only supports controls within the current ob-
ject. However, in my experience, I often need to simultaneously control
multiple objects, which requires the ability to control other objects
beyond the current object. What I am hoping for is the ability similar
to designing scripts on an empty object in Unity to control other objects
within the scene. This could contribute to cleaner code and help reduce
potential errors and debugging burden when designing large-scale AR
applications.”

8 DISCUSSIONS AND FUTUREWORK
8.1 Scalability to More Complex Applications
Although ProInterAR allows users to create various AR interac-
tions applicable to different scenarios, the current scope has some
limitations in meeting all the expectations of our target users.

Physical Simulation. As a powerful tool to enhance realistic be-
haviors and interactions of virtual contents, physical simulation
has not been supported in our current system. Participants U4, who
created an effect of throwing a ball (Figure 7(b)) and U10, who cre-
ated a game of shooting with an arrow (Figure 7(d)), both expected
to endow the ball and the arrow with gravity. We can easily extend

our system with a force system by introducing a new category of
blocks, where each block simulates a kind of force with different
variations. The user can simply drag such blocks to the block stacks
of the contents for adding force simulation effects.

Access to More Information. Our system allows users to script spa-
tial interactions by obtaining the pose information of AR contents,
including hand joints and head. To support more complex inter-
actions (e.g., context-aware interactions (U3) in CApturAR [40],
other-body-part-based interactions (U5)), obtain context informa-
tion (e.g., the current time, weather, and traffic condition), and the
poses of other body parts, we can include system information and
online APIs and enable body part tracking by attaching external
sensors.

8.2 Limitations of Content-centric
Programming

ProInterAR requires users to program behaviors for each content
individually. The blocks of each content are run independently. It is
fussy to obtain the state of one content in the blocks of another since
it requires setting a broadcasting block to communicate between
two contents. Such a content-centric programming manner is com-
monly used in professional software (e.g., Unity), but they allow to
obtain the information of other contents from scripts. By displaying
the information of one content in the blocks of another, it might
be confusing to distinguish which content the block will work on.
One possible solution is to introduce a simple logic of node-based
programming, which is good at transmitting information.

8.3 2D Programming versus Immersive
Programming

Researchers have discussed the benefits of immersive programming
over 2D programming in [53]. We admit that immersive program-
ming provides more spatial information and instant programming
feedback. Although our programming interface is set up in a tablet
browser, it is not a traditional 2D programming interface built on
a desktop, which is isolated from the AR scenarios. Instead, the
user can bring the tablet and wear the AR-HMD at the same time.
So the user can program the interactive behaviors while keeping
an eye on the AR scene. The programmed results can be executed,
watched, and controlled instantly. In addition, we think our current
programming blocks are not necessarily to be designed in a 3D for-
mat, since directly using it in a 2D UI benefits users to have familiar
and quick hand interaction “with less hand fatigue and distraction,
and increasing accuracy”, as reflected from P1 in Study 2, who was
experienced in immersive authoring.

8.4 DoFs of Programming Blocks
In our current system, we design the programming blocks as funda-
mental concepts, allowing users to stack and combine them freely.
It is the reason that we allow for more flexible programming for
general AR interactions. While it offers much freedom, it sometimes
requires creators to stack the blocks for similar actions repetitively.
For example, to make a virtual car move around physical objects,
creators might need to create several buttons to control the moving
direction. Similar block stacks with different argument values (i.e.,
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moving direction) and conditions (i.e., if pressed by hand, trigger-
ing the movement) must be created for each button. To facilitate
these procedures, the wrapped block components with pre-defined
functions can be introduced. For example, a virtual joystick and a
virtual direction button group can be predefined as block compo-
nents. Hand-related block components, such as pre-defined relative
hand positions and hand directions, can also be wrapped to achieve
convenient function specifications.

8.5 Tracking and Detection of Physical
Contents

We provide a manual assignment of a 3D bounding box to an
arbitrary physical object (e.g., a phone) and a manual plane cre-
ation/mesh selection for physical environments. The 6DoF pose of
the physical objects is tracked according to the user’s hand pose.
However, for automatically moving physical objects (e.g., a moving
car and a running human), our approach does not work. Besides,
the bounding box can only approximate the rough volumes of the
objects. For more detailed and fine shapes and surfaces, it is dif-
ficult to detect unless the creator carefully creates and combines
multiple planner surfaces. So, in the future, we will integrate more
robust and flexible object detection, tracking, and shape estimation
algorithms [16] into our system. We will also explore using hand
motions to create surfaced planes [45].

9 CONCLUSION
This paper has presented ProInterAR, a visual programming tool
that enables novice AR creators to create general AR interactions.
We first discussed the design scope of general AR interactions from
four dimensions: subject, scenario, concurrency, and logic. We ana-
lyzed how closely related works on AR prototyping, authoring, and
programming cover the aspects of the dimensions, and the scope of
our proposed system that would support. Compared to the existing
works, we allow users to create general AR interactions directly
and closely happening among both real and virtual objects and
environments, in a parallel and independent manner, with complex
logic flows. Based on these considerations, we designed and devel-
oped our system, consisting of three components: a scene creation
UI from the AR-HMD, a block-based visual programming UI from
the tablet, and an execution and controlling UI from the AR-HMD.
Users can create different types of AR contents and behavior varia-
tions using the corresponding approaches. The programming UI
contains nine categories of blocks to enable motion, looks, hand
interaction, sound effects, and multiple logic controls (e.g., event
sensing and listening, repetition, condition statements, operators,
and variables). We demonstrated the system workflow using an
example of creating a game “3D Whack a Mole”. We showcased the
four potential application scenarios: AR game, AR teaching, sequen-
tial animation, and AR information visualization. One individual
study and one long-session study were conducted to evaluate the
usability, expressiveness, and learning effects of ProInterAR. They
verified that our system can help creators easily create AR applica-
tions with varying complexity.
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