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SpinUp

Fig. 1. Our DrawingSpinUp produces visually vivid 3D character animations (Right) given single input drawings (Bottom-Left) and target motions (Top-Left).

Animating various character drawings is an engaging visual content cre-
ation task. Given a single character drawing, existing animation methods are
limited to flat 2D motions and thus lack 3D effects. An alternative solution
is to reconstruct a 3D model from a character drawing as a proxy and then
retarget 3D motion data onto it. However, the existing image-to-3D methods
could not work well for amateur character drawings in terms of appearance
and geometry. We observe the contour lines, commonly existing in character
drawings, would introduce significant ambiguity in texture synthesis due to
their view-dependence. Additionally, thin regions represented by single-line
contours are difficult to reconstruct (e.g., slim limbs of a stick figure) due to
their delicate structures. To address these issues, we propose a novel system,
DrawingSpinUp, to produce plausible 3D animations and breathe life into
character drawings, allowing them to freely spin up, leap, and even perform
a hip-hop dance. For appearance improvement, we adopt a removal-then-
restoration strategy to first remove the view-dependent contour lines and
then render them back after retargeting the reconstructed character. For
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geometry refinement, we develop a skeleton-based thinning deformation al-
gorithm to refine the slim structures represented by the single-line contours.
The experimental evaluations and a perceptual user study show that our
proposed method outperforms the existing 2D and 3D animation methods
and generates high-quality 3D animations from a single character drawing.
Please refer to our project page (https://drawingspinup2024.github.io) for
the code and generated animations.
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1 INTRODUCTION
Character drawing plays a crucial role in art and design, signifi-
cantly enhancing storytelling, gaming, and animation [Huang 2018;
Lasseter and Rafael 1987; Librande 1992]. Beyond professionals,
character drawing is a popular medium for amateurs, including chil-
dren [Cox 2013; Smith et al. 2023], to unleash their inspiration by
creating imagined characters like superheroes and fairy creatures.
Given such a single drawing, could we bring the human-drawn
character to life, e.g., making it run, leap, and dance on paper?

To animate a character drawing, existing methods (e.g., [Hornung
et al. 2007] and [Smith et al. 2023]) typically retarget 2D motions
onto the character by deforming its shape in 2D image space via
as-rigid-as-possible (ARAP) [Igarashi et al. 2005]. Unfortunately,
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Fig. 2. Our DrawingSpinUp produces visually more pleasing character animation results given input drawings and target motions than the existing 2D and 3D
animation techniques.

these methods cannot work well for 3D motions beyond the 2D
image plane, e.g., rotating the character’s body or tilting its head,
as shown in Fig. 2 (results of Smith et al.). This intuitive limita-
tion stems from the lack of a 3D sense. To afford 3D motions, a
straightforward solution is to reconstruct 3D models as proxies
from character drawings and then retarget 3D motions onto them.
However, existing image-to-3D methods (e.g., One-2-3-45 [Liu et al.
2024b], One-2-3-45++ [Liu et al. 2024a], DreamGaussian [Tang et al.
2023], Wonder3D [Long et al. 2024], LRM [Hong et al. 2024]) al-
ways struggle to reconstruct visually pleasing results from amateur
character drawings due to the domain gap between photo-realistic
images and human-drawn sketches, as shown in Fig. 2 (results of
DreamGaussian and Wonder3D).
Unlike photo-realistic images merely with texture details, we

observe character drawings often exhibit diverse types of strokes,
including interior lines and contour lines, as shown in Fig. 3 (b)-(c).
Specifically, interior lines appear inside a character and represent
texture patterns similar to those in photo-realistic images. Differ-
ent from interior lines, contour lines represent stylized character
boundaries, which are view- and motion-dependent lines and are
absent in photo-realistic images. Existing image-to-3D models are
always trained on photo-realistic images, thus tending to mistake
artistic contour lines for internal texture details. This ambiguity
can lead to appearance degradation and even affect shape recon-
struction quality, as shown in Fig. 8 (c). Moreover, these methods
(e.g., Wonder3D [Long et al. 2024]) generally generate several fixed-
view images and then fuse them to get a 3D model. Because this
pipeline inherently handles contours as view-independent textures,
re-training/fine-tuning them on 3D shapes with contour rendering
still fails to address contour issues. Additionally, single-line contours
are commonly used to depict shapes and structures in an abstract

manner, e.g., slim limbs in stick figures, as shown in Fig. 3 (d). Since
such depiction is rarely seen in the training images, the models
pre-trained on photo-realistic images might fail to reconstruct such
delicate structures.

(a) Input drawing (b) Interior lines (c) Contour lines (d) Single-line contours

Fig. 3. An example of a character drawing with diverse types of strokes,
highlighted in blue (b), red (c) and green (d).

Based on the above observations, we present DrawingSpinUp, the
first 3D-aware animation system for generating non-planar anima-
tions from single character drawings given 3D motions. Our key
idea is to recognize the contour lines and process them separately
to adapt to the reconstruction prior of the pre-trained image-to-3D
models. Specifically, we adopt a removal-then-restoration strategy
to handle the contour lines. We first design a network to remove
contour lines in a character drawing and inpaint textures in the
removed regions. Next, we utilize a pre-trained image-to-3D model
to reconstruct a textured geometry as a proxy for 3D motion retar-
geting. Finally, we propose a geometry-aware stylization network
to render view- and motion-dependent contour lines for each frame
of the retargeted character and enhance the internal textures to
match the style of the input image. In addition, to ensure the quality
of geometry reconstruction, we develop a skeleton-based thinning
deformation algorithm to refine the slim structures indicated by the
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single-line contours. We select 120 representative amateur character
drawing samples of various styles as test inputs from the Amateur
Drawing Dataset collected by Smith et al. [2023] to verify the effi-
ciency of our method. The results of extensive experiments and a
perceptual user study show that our DrawingSpinUp can achieve
plausible 3D reconstruction in geometry and appearance from single
character drawings and generate vivid 3D animations, superior to
existing 2D and 3D animation methods.

2 RELATED WORK
In this section, we will summarize prior works closely related to
character animation based on single drawings.

2.1 2D Character Animation
Igarashi et al. [2005] introduce an as-rigid-as-possible (ARAP) de-
formation algorithm that enables users to intuitively deform a 2D
shape by dragging keypoints, laying the foundation for animation in
2D image space. Building on this, several subsequent methods [Hor-
nung et al. 2007; Smith et al. 2023] typically project 3D motions onto
a 2D plane to facilitate character deformation using ARAP. Live
Sketch [Su et al. 2018] adopts a stroke-preserving ARAP method
for animating sketches while preserving the shape of user-specified
strokes. AniClipart [Wu et al. 2024] further develops a differen-
tiable ARAP algorithm to optimize and warp a clipart to a new pose,
guided by text-to-video priors. However, these 2D animation meth-
ods could not directly work for 3D animations due to single-view
inputs and the lack of a 3D sense, as shown in Fig. 2 (results of
Smith et al.). Additionally, some data-driven methods approach this
task as a conditional generation problem and utilize deep learning
methods for character reanimation through motion transfer [Chan
et al. 2019; Hu 2024; Xu et al. 2024]. However, these methods are
still limited to generating results from a preset viewpoint. In con-
trast, our proposed system can effectively transfer 3D motions to a
character drawing by explicitly reconstructing a 3D model from the
drawing and using it for motion retargeting, allowing viewpoint
freedom.

2.2 3D Character Animation
To retarget 3D motions, many researchers have proposed to re-
construct 3D models as proxies from single-view drawings. Early
methods often construct 3Dmeshes based on silhouette and skeleton
via inflation [Buchanan et al. 2013; Igarashi et al. 1999; Nealen et al.
2007; Schmidt et al. 2005; Tai et al. 2004]. Monster Mash [Dvorožňák
et al. 2020] incorporates 3D inflation with a layered deformation
model to casually produce a smooth 3D mesh and animation given
a single-view sketch. Extended from Fibermesh [Nealen et al. 2007],
CreatureShop [Zhang et al. 2022] proposes an oblique-view model-
ing method to create fully-textured 3D character models by trans-
ferring textures between two intrinsically symmetric body parts.
Parametric shape models have also been widely used in character
reconstruction. PhotoWakeUp [Weng et al. 2019] proposes a 2D
warping method to deform a skinned multi-person linear (SMPL)
model [Loper et al. 2015] to fit the character silhouette of a sin-
gle photo to create an animatable mesh. ReenactArtFace [Qu et al.
2023] reconstructs a 3D artistic face through a 3D morphable model

(3DMM) [Paysan et al. 2009] and a 2D parsing map from an input
artistic image. However, the above methods either ignore the back
texture or simply mirror and duplicate the given front-view texture
onto the back of a character, failing to address the texture issue
effectively. To address this issue, many data-driven methods [Chen
et al. 2023; Luo et al. 2023; Peng et al. 2024] have been proposed to
train generative models on a specific dataset to learn the missing
textures. However, these methods are specifically tailored towards
particular forms, such as formulated cartoon or anime characters.
Unfortunately, there is a scarcity of large-scale pairs of hand-drawn
character drawings and 3D assets for training since it is tedious and
expensive to collect such data with subjective and artistic distortions.
Recent advances in novel view synthesis [Hong et al. 2024; Liu et al.
2024b, 2023; Long et al. 2024; Tang et al. 2023] have brought a new
solution, which is to exploit the powerful 3D prior capabilities of
these pre-trained image-to-3Dmodels to directly predict the missing
textures. In this paper, we utilize a pre-trained diffusion model [Long
et al. 2024] to generate multi-view images to compensate for the
lack of back textures.

2.3 Contour Rendering
As discussed in Section 1, non-photorealistic contour lines of char-
acter drawings may degrade reconstruction quality due to its nature
of view- and motion-dependence. A few works have recognized this
issue and managed to mitigate it. PAniC-3D [Chen et al. 2023] pro-
poses a line-infilling method to translate anime character images to
render-like images more conducive to 3D reconstruction. It extracts
lines with DoG operator, which deals with all lines equally, thus a
facial landmark detector has to be used to keep certain lines around
key facial features preserved. Qu et al. [2023] propose to synthesize
contour lines for artistic faces by leveraging the input parsing map
and a contour loss. Due to the use of uniform-thickness contour
extraction strategy, their method might fail to handle the style of
contour lines with inconsistent thickness and various textures. For
stylizing contours, existing stylization methods [Bénard et al. 2013;
Fišer et al. 2016] that learn example-based styles are a potential
solution, but they do not take the underlying 3D geometry into
account and thus could not generate stylized contours with multi-
view consistency. Liu et al. [2021] incorporate a 3D shape with a line
drawing generated from Neural Contours [Liu et al. 2020] for stroke
stylization. Instead of merely stylizing lines in [Liu et al. 2021], our
task also needs to harmonize the generated contours with the inte-
rior textures of the given character drawing. Inspired by the prior
works, we first train a network to remove these view-dependent
contour lines to prevent them from confusing the 3D reconstruc-
tion process and then design a geometry-aware stylization network
to restore the contours, producing animations consistent with the
input drawing style.

3 METHOD
We aim to build a system that can generate 3D animations by apply-
ing 3D target motions to a single character drawing. We follow the
work of Smith et al. [2023] to preprocess a human-drawn character
drawing, including detection, segmentation, and pose estimation.
Given a single character drawing, the foreground segmentation

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.



4 • Zhou et al.

Stylization Network
&

(a) Contour Removal (b) Textured Character Generation

(c) Stylized Contour Restoration

Refinement

Wonder3D

Stylization Network

...

...

FFC-ResNet

Rendered animation frames Stylized animation frames

Stylization Network

... ...
Loss

Loss

Fig. 4. The pipeline of our DrawingSpinUp. (a) We first remove and inpaint the contour regions of the input drawing via an FFC-ResNet. (b) We use a pre-trained
Wonder3D to generate a coarse 3D geometry and then refine its shape and texture. (c) We propose a two-stage geometry-aware stylization network to restore
the stylized contours across animation frames.

mask, the predicted joint keypoints, and a target 3D motion, our
system DrawingSpinUp generates a vivid 3D animation while pre-
serving the consistent artistic style with the input drawing. Fig. 4
shows the pipeline of DrawingSpinUp. We first remove and inpaint
the contour regions of the input drawing via an image-to-image
translation network (Section 3.1). Next, we use a pre-trained diffu-
sion model and a neural surface reconstructor to generate a coarse
3D geometry (Section 3.2.1). Then we develop a shape refinement
strategy to deal with the noisy surface and elongated structures
depicted by thin strokes (Section 3.2.3). We automatically rig the
character based on the predicted joint keypoints and then retarget
the given 3D motion onto it to generate an initial animation (Section
3.3). Finally, we propose a geometry-aware stylization network to
restore the stylized contours across animation frames (Section 3.4).
We will present the details in the following subsections.

3.1 Contour Removal
The style and thickness of contours vary significantly across differ-
ent drawings and can even be non-uniform within a single drawing.
Therefore, using a distance transform with fixed parameters to ex-
tract contours is inadequate for all cases, leading to unclear results
or excessive removal. To address this, we structure the contour pre-
diction task as an image-to-image translation problem. Given an
input drawing 𝐼 and its segmented foreground mask𝑀 , we predict
the corresponding contour mask 𝑀𝑐 . We use an FFC-ResNet [Su-
vorov et al. 2022] as the generator of our contour removal network.
We choose FFC-ResNet because contour lines are typically found at
the boundaries of objects, and Fast Fourier Convolution (FFC) [Chi
et al. 2020] has a large receptive field that covers the entire image,
allowing for more accurate predictions of contour regions compared
to vanilla convolution.
We use the 3DBiCar dataset [Luo et al. 2023] as the training

dataset. We render front-view images and contour lines of different
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thicknesses from textured 3D biped cartoon characters in 3DBiCar
with Blender [Blender Development Team. 2022]. Next, we stylize
the contour lines with random colors and add them to the images
to imitate the styles of amateur drawings.

FastMarching

Extend

FFC-ResNet

Fig. 5. The process of contour removal.

After obtaining the predicted contour mask𝑀𝑐 , we remove the
original contour by inpainting the masked region with the interior
texture of the input drawing, as illustrated in Fig. 5. To eliminate the
impact of the background color (always white) on the inpainting
region, we extend𝑀𝑐 by adding the background region (1−𝑀) into
it to get the inpainting region mask𝑀𝑖𝑛𝑝𝑎𝑖𝑛𝑡 :

𝑀𝑖𝑛𝑝𝑎𝑖𝑛𝑡 = 𝑀𝑐 ∪ (1 −𝑀). (1)

Next, we inpaint the pixels within𝑀𝑖𝑛𝑝𝑎𝑖𝑛𝑡 heuristically based on a
fast marching method [Telea 2004]. That is, each pixel in𝑀𝑖𝑛𝑝𝑎𝑖𝑛𝑡

is replaced by a normalized weighted sum of the neighboring pixels
in (1 − 𝑀𝑖𝑛𝑝𝑎𝑖𝑛𝑡 ). In a word, we compute the inpainted drawing
𝐼𝑖𝑛𝑝𝑎𝑖𝑛𝑡 without contour by

𝐼 ′𝑖𝑛𝑝𝑎𝑖𝑛𝑡 = 𝐹𝑎𝑠𝑡𝑀𝑎𝑟𝑐ℎ𝑖𝑛𝑔(𝐼 , 𝑀𝑖𝑛𝑝𝑎𝑖𝑛𝑡 );
𝐼𝑖𝑛𝑝𝑎𝑖𝑛𝑡 = 𝐼 ′𝑖𝑛𝑝𝑎𝑖𝑛𝑡 ·𝑀 + 𝐼 · (1 −𝑀) .

(2)

Please refer to supplemental materials for more details and a com-
parison of different methods for contour removal.

3.2 3D Character Generation
3.2.1 Coarse Reconstruction. To reconstruct a 3D character from a
single contour-free drawing, we use a pre-trained diffusion model,
Wonder3D [Long et al. 2024], to produce multi-view normal maps
and color images. We choose Wonder3D as our backbone since it
uses an orthographic camera setting, which helps to keep strong
generalizations on amateur character drawings. We apply an off-
the-shelf segmentation network, IS-Net [Qin et al. 2022], to segment
these normal maps to get the corresponding foreground masks.
Then we utilize a neural surface reconstructor, Instant-NSR [Guo
2022; Zhao et al. 2022], to reconstruct a textured geometry from
these 2D representations. However, the obtained shape and texture
are both far from satisfactory. As observed from Fig. 8 (d), the thin
structures of the reconstructed shape might become much thicker
than those in the input drawings. In some cases, there could even
be adhesion on the surface, as shown in Fig. 6, leading to geometry

artifacts. Besides, the predicted texture appears blurry and loses
details. These phenomena may result from the roughness of mask
prediction and the misalignment of multi-view information.

(a) Input drawing (b) Animating the character reconstructed by Wonder3D

Fig. 6. An example of surface adhesion.

3.2.2 Shape Cutting. To refine the reconstructed shape, we employ
front-view cutting on the queried SDF using the front-view mask
𝑀 . Thus, the trimmed geometry can be defined by the 0 level set:

G =
{
(𝑥,𝑦, 𝑧) ∈ R3 | 𝑓 (𝑥,𝑦, 𝑧) ≤ 0, 𝑀 (𝑋,𝑌 ) = 1

}
, (3)

where 𝑓 (·) is the SDF and (𝑋,𝑌 ) is the projected 2D coordinates
on the front-view plane of any 3D sampling point (𝑥,𝑦, 𝑧). Then
we pass the level set to the Marching Cubes algorithm [Lorensen
and Cline 1998] to extract the trimmed geometry, as shown in Fig. 8
(e). However, the front-view cutting operation can only change the
silhouette of the front but not the thickness of the side.

3.2.3 Skeleton-based Thinning Deformation. To reduce the thick-
ness of the side, we design a skeleton-based shape deformation
algorithm to thin these regions without changing the front-view
boundary. We solve it as a bi-harmonic problem [Botsch and Kobbelt
2004]. Given a trimmed geometry G, we denote its vertices as v and
its faces as f . Thus, we can easily thin G by deforming it following

v′ = v + d;
d = B(v, f, h, dh) .

(4)

where d represents a deformation field obtained from B(·) that
computes bi-harmonic maps using a uniform Laplacian operator [Ja-
cobson et al. 2018]. We estimate the whole deformation field 𝑑 based
on the known displacements dh, where h denotes handle indices.

Fig. 7. An example of handle vertex location.

We next explain how we locate the handle vertices. We divide
handle vertices into two categories (fixed and move-needed) to de-
termine whether a local structure requires thinning. To distinguish
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(a) Original (b) W/o contour (c) Wonder3D (original) (d) Wonder3D (w/o contour) (e) Front-view cutting (f) Thinning (g) Color back-projection

Fig. 8. Results of different processing stages.

them, as illustrated in Fig. 7, we extract a distance map𝐷 and a skele-
ton 𝑆 from𝑀 via a medial-axis extraction algorithm [Lee et al. 1994].
Based on them, we can filter two masks𝑀𝑓 𝑖𝑥 and 𝑆𝑚𝑜𝑣 respectively,
indicating the regions of fixing and move-needed vertices, following

𝑀𝑓 𝑖𝑥 = 𝑀 · (𝐷 ≥ 𝜃1),
𝑆 ′𝑚𝑜𝑣 = 𝑆 · (𝐷 ≤ 𝜃2),
𝑆𝑚𝑜𝑣 = 𝐼𝑅(𝑆 ′𝑚𝑜𝑣),

(5)

where 𝜃1 and 𝜃2 are distance thresholds and should meet 𝜃1 > 𝜃2.
We use 𝜃1 = 11 and 𝜃2 = 6 in our experiments. Considering that
the thinning deformation may affect adjacent areas (e.g., thinning
the top of the neck may damage the face that is fixed), we remove
the pixels within an intersection area 𝑃𝑖𝑛𝑡𝑒𝑟 from 𝑆 ′𝑚𝑜𝑣 via 𝐼𝑅(·).
Then we can easily distinguish fixed vertices 𝑃𝑓 𝑖𝑥 and move-needed
vertices 𝑃𝑚𝑜𝑣 based on𝑀𝑓 𝑖𝑥 and 𝑆𝑚𝑜𝑣 . We compute the desired dis-
placement for each vertex in 𝑃𝑚𝑜𝑣 by querying the distance value
from 𝐷 . Finally, we update 𝑃𝑚𝑜𝑣 through bilateral deformation fol-
lowing Eq. 4. For sharp edges generated by cutting and thinning, we
use Laplacian smoothing [Vollmer et al. 1999] to smooth the surface.
Fig. 8 (f) shows an example of thinning the character’s hair and
limbs based on the proposed method. Please refer to supplemental
materials for more details.

3.2.4 Color Back-projection. To improve the texture quality, we
recolor each vertex by back-projecting multi-view color images
onto 3D space, inspired by Peng et al. [2024]. In this paper, we focus
exclusively on characters in a forward stance, a common posture in
amateur drawings resembling an A/T-pose. This allows us to cover
most textures by querying front and back view color images. For
areas not visible from the front and back views, such as the inner
side of the arms close to the body or the inner surface between
the legs, we employ weighted colors from neighboring vertices for
inpainting. Ultimately, we color each vertex to create a textured
geometry, as illustrated in Fig. 8 (g).

3.3 Rigging and Retargeting
Given the contour-free 3D characters, we employ Mixamo’s online
rigging tool [Inc. 2022] to automatically rig them to be animation-
ready 3D assets. Mixamo uses a keypoint-based auto-rigging al-
gorithm based on eight 2D joint keypoints on the front view. We
directly reuse the joint keypoints offered by Smith et al. [2023].
Given any humanoid 3D motion data, we can retarget it onto the
rigged characters with Rokoko [2023] for animation rendering. As
for skinning weight, we use Blender [Blender Development Team.
2022] to automatically calculate the distance between each vertex
and the closest bone and assign weights accordingly.

3.4 Stylized Contour Restoration
Given the animated contour-free character, we can render a se-
quence of color frames F = {𝐹1, 𝐹2, ..., 𝐹𝑁 } (𝑁 is the sequence
length). As illustrated in Fig. 4 (c), we now restore the original draw-
ing style (including texture details and contour lines) for each frame
of F , taking the stylized keyframe 𝐼 as a condition, to obtain the
stylized frames O = {𝑂1,𝑂2, ...,𝑂𝑁 }. Thus, we propose a two-stage
geometry-aware stylization network to address this image-to-image
translation task.

3.4.1 Network Architecture. As illustrated in Fig. 4 (c), our styl-
ization network is composed of two cascaded modified U-Nets of
Futschik et al. [2019]. The first one𝑈𝑡𝑒𝑥𝑡𝑢𝑟𝑒 is responsible for restor-
ing internal texture details, while the second one 𝑈𝑐𝑜𝑛𝑡𝑜𝑢𝑟 focuses
on restoring external contour lines. The network architectures of
these two U-Nets are illustrated in Fig. 9. Considering that many
energetic motions may require the character to tilt or even head
down while the vanilla convolutional layers are sensitive to rotation,
as claimed by [Finnveden et al. 2021; Hao et al. 2022; Mo and Zhao
2024], we replace all convolutional layers (except for the final layer)
of𝑈𝑡𝑒𝑥𝑡𝑢𝑟𝑒 with rotation-invariant coordinate (RIC) convolutional
layers [Mo and Zhao 2024] to enhance the stability of texture details.

Input

RIC convolutional layer

RIC residual blocks

RIC upsample

Convolutional layer

Output

Residual blocks

Upsample

Fig. 9. The network architectures of two U-Nets in our stylization network.

3.4.2 Geometry-aware Inputs. Inspire by Jamriška et al. [2019], to
maintain multi-view consistency, our stylization network takes as
inputs four types of guidance channels, i.e., original color frame
𝐹 , foreground mask 𝐺𝑚𝑎𝑠𝑘 , positional hint 𝐺𝑝𝑜𝑠 , and edge map
𝐺𝑒𝑑𝑔𝑒 . Specifically,𝐺𝑝𝑜𝑠 is obtained from the normalized (𝑥,𝑦) co-
ordinates of the character in a rest posture, providing the view-
independent information, encouraging the source patches from 𝐼 to
be transferred to similar relative positions in a color frame 𝐹 .𝐺𝑒𝑑𝑔𝑒

is extracted from the Z-depth of each frame with the Canny edge
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detector [Canny 1986] and is used in the contour restoration stage
to compensate for the view-dependent information. More specifi-
cally, the first U-Net 𝑈𝑡𝑒𝑥𝑡𝑢𝑟𝑒 takes (𝐹,𝐺𝑚𝑎𝑠𝑘 ,𝐺𝑝𝑜𝑠 ) as input and
generates the middle stylized frame 𝑂 ′. Then we overlap𝐺𝑒𝑑𝑔𝑒 on
𝑂 ′ and the second U-Net𝑈𝑐𝑜𝑛𝑡𝑜𝑢𝑟 takes (𝑂 ′ +𝐺𝑒𝑑𝑔𝑒 ,𝐺𝑚𝑎𝑠𝑘 ,𝐺𝑝𝑜𝑠 )
as input and generate the final stylized frame 𝑂 .

3.4.3 Patch-based Training. Learning common knowledge via a
generalized stylization network for contour restoration is difficult.
This is because the artistic styles of character drawings have large
variances in color, thickness, and stroke style. Thus, we adopt a
patch-based training strategy based on limited training samples,
following Texler et al. [2020]. We use the same training strategy
for 𝑈𝑡𝑒𝑥𝑡𝑢𝑟𝑒 and 𝑈𝑐𝑜𝑛𝑡𝑜𝑢𝑟 . Specifically, we randomly sample small
𝑘 × 𝑘 (𝑤ℎ𝑒𝑟𝑒𝑘 = 32) patches from all guidance channels and the
ground truth. These patch pairs are then used to train the networks
to generate corresponding patches with texture details or stylized
contours. We adopt a combination of L1 loss, adversarial loss, and
VGG loss for supervised learning. The loss between 𝑂 ′ and 𝐼𝑖𝑛𝑝𝑎𝑖𝑛𝑡
is used to optimize𝑈𝑡𝑒𝑥𝑡𝑢𝑟𝑒 , while the loss between𝑂 and 𝐼 is used
to optimize 𝑈𝑐𝑜𝑛𝑡𝑜𝑢𝑟 . When inference, thanks to the settings of
fully convolutional layers, we can feed each frame with full size to
the network to finally restore internal texture details and stylized
contours for a generated animation.

4 EXPERIMENTS

4.1 Runtime
Here we give the runtime of each stage on a single RTX 4090 GPU,
including (1) contour removal (0.1s), (2) 3D character generation
(2-3min), (3) online rigging (1-2min), (4) stylization network training
(5-10min), (5) frame rendering in Blender with Eevee (0.1s/frame),
and (6) stylization network inference (0.2s/frame).
The total training time is 10-15min for each character, and the

inference time is 0.3s/frame. Note that we need to run Steps (1)-(4)
only once to model the domain of a new character. Once the stylized
network is trained, we can repeat Steps (5)-(6) to generate diverse
animations given different 3D motions for the same character.

4.2 Comparison to State-of-the-Art Methods
DrawingSpinUp VS. Smith et al. [2023]. Fig. 10 shows a compar-

ison between Smith et al.’s method and ours, given the same 3D
motion. We can observe the results generated by Smith et al. only
exhibit planar motion projected from the 3D motion of the limbs,
failing to capture the tilting of the body or the head of the character.
Instead, our method can produce plausible 3D-aware animation that
is faithful to the given 3D motion.

DrawingSpinUp VS. Other 3D-based Animation Methods. To our
knowledge, our work is the first to support 3D animation of ama-
teur character drawings. Thus, we mainly compare our method with
those based on different image-to-3D reconstruction backbones, in-
cluding DreamGaussian [Tang et al. 2023] and Wonder3D [Long
et al. 2024]. Fig. 11 shows the animated results based on their recon-
structed characters from the input drawings. DreamGaussian tends
to produce pure color but not details for novel-view textures, lead-
ing to serious artifacts at the back of characters. Wonder3D often

Fig. 10. DrawingSpinUp VS. Smith et al. [2023]. From top to bottom: target
motions (front-left view), Smith et al.’s result, and ours (front-left view).

generates messy textures due to the ambiguity caused by contours.
Thanks to our contour removal network and stylization network,
our method can maintain consistent styles with the input drawings
and produce natural animations.

4.3 Perceptual User Study
We conducted a user study to evaluate the perceptual quality of our
DrawingSpinUp over the other compared methods via the following
two metrics:

• Motion Consistency (MC): the alignment between the target
motion and the generated motion;

• Style Preservation (SP): the preservation of the original style.
We conducted the user study via an online questionnaire with 15
groups of results by the compared methods (presented in a ran-
dom order) and invited 53 human viewers to rate them in terms
of the two metrics using a 5-point scale (1: "poor quality"; 2: "fair
quality"; 3: "average quality"; 4: "good quality"; 5: "excellent qual-
ity"). The participants included a diverse demographic aged 23 to 55,
with balanced gender representation. We recruited them via social
media, ensuring a mix of expertise levels from beginners to profes-
sionals in animation and illustration. The average ratings for MC
are 3.85 (Smith), 4.30 (DreamGaussian), 4.30 (Wonder3D), and 4.55
(Ours), respectively. The average ratings for SP are 4.18 (Smith), 3.65
(DreamGaussian), 3.50 (Wonder3D), and 4.53 (Ours), respectively.

We also conducted one-way ANOVA tests on the rating results
and found a significant difference among these four methods for mo-
tion consistency (F=28.84, p<0.001) and style consistency (F=71.83,
p<0.001). The further paired T-tests (with p<0.001) show that our
method got a significantly higher rating in motion consistency
than the other methods, i.e., Smith et al. (t=9.90), DreamGaussian
(t=9.96) and Wonder3D (t=10.18). In terms of style consistency, our
method also outperforms the other 3D-based methods, i.e., Smith et
al. (t=4.31), DreamGaussian (t=20.74), andWonder3D (t=23.954). The
results clearly show that DrawingSpinUp significantly outperforms
the other three methods in terms of motion consistency and style
preservation.
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(a) Input drawings (b) DreamGaussian (c) Wonder3D (d) Ours

Fig. 11. DrawingSpinUp VS. other 3D-based animation methods.

4.4 Ablation Study

(b) Textured characters(a) Input drawing (c) Stylized animation frames

Fig. 12. Comparison between w/o (Top) and w/ (Bottom) contour removal.

Contour Removal. Fig. 12 shows the impact of contour removal.
It can be seen that without this step, the contours would be consid-
ered as part of the internal texture, which cannot be solved by the
following stylization step. In contrast, after contour removal, our
method renders view-dependent contours to form a more plausible
animation.

Cutting and Thinning. We also present a comparison of three
scenarios: no-cut-no-thin (Top), only-cut (Middle), and cut-and-thin
(Bottom). As shown in Fig. 13, with no shape refinement or only
cutting leads to inflated results for fine structures such as hair and
limbs. In contrast, our cutting-and-thinning method can handle well
the elongated structures depicted by slim strokes.

(a) Input drawing (b) Textured characters (c) Stylized animation frames

Fig. 13. Comparison of three scenarios: no-cut-no-thin (Top), only-cut (Mid-
dle), and cut-and-thin (Bottom).

Rotation Invariance. We compare the results without (Top) and
with (Bottom) RIC convolution in Fig. 14. Vanilla convolution cannot
work well with the head-down animation frames since it lacks the
ability to align the feature maps of a transformed image with those
of its original. In contrast, RIC convolution alleviates this issue,
enhancing the stability of results.

5 CONCLUSION
This paper has presented the first systemDrawingSpinUp to generate
vivid 3D animations by applying 3D motions to a single character
drawing, while maintaining the contour style consistent with the
input drawing. To reconstruct a 3D character as a proxy from the
single drawing, our system borrows the reconstruction prior from a
pre-trained image-to-3D diffusion model and makes it compatible
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(a) Input drawing (b) Stylized animation frames (c) Zoomed details

Fig. 14. Comparison between w/o (Top) and w/ (Bottom) RIC convolution.

with human-drawn drawings in terms of appearance and geometry.
For appearance improvement, we adopt a removal-then-restoration
strategy to first remove the view-dependent contour lines and then
render them back after retargeting the reconstructed character. For
shape refinement, we develop a cutting-and-thinning method to
refine the slim structures represented by the single-line contours.

(b) Extracted edges and stylized animation frames(a) Input drawings

Fig. 15. Two failure cases due to inappropriate edge extraction.

(a) Input drawings (b) Stylized animation frames

Fig. 16. Two failure cases due to too thick contour lines.

While our system can produce visually plausible 3D animations,
it still has several limitations. First, we assume the characters in
input drawings are approximately in a frontal A/T pose, without
any self-occlusion. Some self-occlusion cases, such as crossed arms,
would result in the reconstructed geometry exhibiting surface ad-
hesion or merging of body parts. Second, our contour rendering
might produce artifacts when we extract edges with inappropriate
thresholds, as shown in the red dotted circles in Fig. 15. Additionally,

when the contour lines of the input drawing are too thick, artifacts
may appear in the generated results, as indicated by the red dotted
circles in Fig. 16. Third, the rigging algorithm mainly depends on
the quality of 3D reconstruction (which performs generally well
thanks to our shape refinement for thin structures, e.g., the stick
figure in Row 1 of Fig. 11) and keypoint detection (which can be
manually corrected before rigging). However, it might produce ar-
tifacts when the drawings are highly abstract and far away from
bipedal characters. We are interested in extending our method to
work for general human drawings, e.g., quadruped animals.

In the future, we plan to extend our system for real-time per-
formance, involving developing fast 3D reconstruction and auto-
rigging methods, and investigate a generalized stylization network
for acceleration. Although ourmethod is not real-time, it benefits the
community of character animation and non-photorealistic render-
ing. We envision its potential for drawing-to-animation storytelling
by integrating text prompts and prototyping animation designs in
cartoon films, games, VR/AR scenes, etc.
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